Title: Cybersecurity as it Applies to the Survivability Key Performance Parameter

Date: 6 June 2018

Presenters: Vincent Lamolinara, Professors of Acquisition Cybersecurity, Defense Acquisition University, Mid-Atlantic Region

Moderator: Jim Davis, Logistics Department Chair, Defense Acquisition University, Mid-Atlantic Region
Background

DepSecDef (DSD) directed Joint Staff to develop Cybersecurity KPP

- DOT&E Cybersecurity Report … “Highlighted multiple weapon systems with vulnerabilities that should have been known and fixed prior to DT&E.”

- JCS Guidance from JROC Memo 009-17, 27 Jan 2017:
 - Cyber Survivability Endorsement (CSE) Implementation Guide (now v1.01a)
 - 10 Cyber Survivability Attributes (CSAs)

- CSE Implementation Guide helps sponsors articulate cyber survivability requirements in the ICD, AoA, CDD (KPP starts here), & CPD entered in the Knowledge Management / Decision Support (KM/DS) tool for programs with Joint Requirements Oversight Council (JROC) interest, Joint Capabilities Board (JCB) Interest, or qualify as Joint Integration.

- Although the CSE is only required for these levels of Joint interest, the Services are encouraged to use this guide for requirement documents that are validated by the DoD Component sponsor.
Cyber Survivability Requirement

- System Survivability Key Performance Parameter (KPP)
 - SS KPP = Kinetic, EW & Cyber
 - Cyber Survivability Endorsement (CSE) From Joint Staff
 - Three pillars:
 - Prevent – design principles that protect system’s mission functions from most likely cyber threats
 - Mitigate – design principles to detect and respond to cyber-attacks; enable the mission system to survive attacks and complete the mission
 - Recover – design principles to enable recovery from cyber-attacks and prepare mission systems for the next fight
Cyber Survivability Endorsement (CSE)

KPP Pillars	Cyber Survivability Attributes (CSA)
Prevent	CSA 01 - Control Access
CSA 02 - Reduce Cyber Detectability	
CSA 03 - Secure Transmissions and Communications	
CSA 04 - Protect Information from Exploitation	
CSA 05 - Partition and Ensure Critical Functions at Mission Completion Performance Levels	
CSA 06 - Minimize and Harden Cyber Attack Surfaces	
Mitigate	CSA 07 – Baseline & Monitor Systems, and Detect Anomalies
CSA 08 - Manage System Performance if Degraded by Cyber Events	
Recover / Resiliency | CSA 09 - Recover System Capabilities

Must address Cyber Survivability Attributes (CSA) as part of the System Survivability KPP
Systems Security Engineering (SSE) Sub-Elements
Cyber System Survivability Risk

Step 1: Select Mission Type
- MT1 – Organization Support
- MT2 – Mission Support
- MT3 – Operational / Tactical
- MT4 – Strategic / National

Step 2: Select Cyber Dependence Level
- DL1 – Sustain Ops / Maneuver
- DL2 – Maintain Communications
- DL3 – Offensive / Defensive Activities

Step 3: Select Adversary Tier Threat
- AT1 – Nascent
- AT2 – Limited
- AT3 – Moderate
- AT4 – Advanced

Step 4: Select Impact Level
- IL1 – Acceptable
- IL2 – Limited
- IL3 – Serious
- IL4 – Severe

Criticality Analysis

Mission Functions
- Type 1 – Required
- Type 2 – Supporting
- Type 3 – Not Required

Step 5: Cyber Survivability Risk Category
- CSRC1 – Low
- CSRC2 – Moderate
- CSRC3 – High
- CSRC4 – Very High

CSRC aggregates Mission, Cyber Dependence & Threat to inform ICD/CDD/CPD language & SSE Sub-elements / Security Controls applied
Cyber Survivability Attributes (CSA) & the Risk Management Framework (RMF)

- ~800 NIST 800-53 Cybersecurity Technical Controls
 - Supports the Risk Management Framework (RMF)
 - Consist of 18 Control Families

<table>
<thead>
<tr>
<th>ID</th>
<th>FAMILY</th>
<th>ID</th>
<th>FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Access Control</td>
<td>MP</td>
<td>Media Protection</td>
</tr>
<tr>
<td>AT</td>
<td>Awareness and Training</td>
<td>PE</td>
<td>Physical and Environmental Protection</td>
</tr>
<tr>
<td>AU</td>
<td>Audit and Accountability</td>
<td>PL</td>
<td>Planning</td>
</tr>
<tr>
<td>CA</td>
<td>Security Assessment and Authorization</td>
<td>PS</td>
<td>Personnel Security</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
<td>RA</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>CP</td>
<td>Contingency Planning</td>
<td>SA</td>
<td>System and Services Acquisition</td>
</tr>
<tr>
<td>IA</td>
<td>Identification and Authentication</td>
<td>SC</td>
<td>System and Communications Protection</td>
</tr>
<tr>
<td>IR</td>
<td>Incident Response</td>
<td>SI</td>
<td>System and Information Integrity</td>
</tr>
<tr>
<td>MA</td>
<td>Maintenance</td>
<td>PM</td>
<td>Program Management</td>
</tr>
</tbody>
</table>

- 239 Identified NIST controls potentially applicable to CSAs
 - 98 Highly Applicable
 - 86 Somewhat Applicable
 - 55 Require Interpretation
CSA to RMF to System Security Engineering (SSE) Mapping

- SS KPP to CSA to RMF (NIST Security Controls) to **SSE Mapping**
 - Least Privilege
 - Resistance to Attack
 - Continuous Monitoring
 - Prioritized Operations
 - Data Segregation
 - Recover from a Trusted Source
 - Periodically Save State
 - Threat Evolution
 - Failover

- “Mesh” Interrelation
- Focus on **Weapon System**-germane controls
- Adapt controls for SSE which is *more relevant to Weapon Systems*
- **Exemplar SSE Requirements Language** for:
 - ICD / CDD / CPD
 - RFP
 - SOW
Implementation of **CSA 9 Recover System Capabilities** might require **SSE sub-elements:**

- **“prioritized operations”** to shed lower priority tasks,
- **“periodically save state”** to establish the restart point, and
- **“recover from a trusted source”** to ensure return to normal operations.

NIST SP 800-53 Control CP-10 “Information System Recovery and Reconstitution”:

- Specifically, the control CP-10 (4) “Restore Within Time Period” would be germane
- **Language from NIST SP 800-53** for use in ICD/CDD could include:
 - “Restoration of information system components includes reimaging which restores components to known, operational states”.

SSE RFP Language for **CSA 9** might include:

- “In the event of cyber attack, compromises, or events, the system must be capable of being restored to an effective operational state in which the system’s software, configuration and operational information, security protections, and mission systems information are at pre-attack assured levels”.

CSA 9 clearly is interrelated to **CSA 7 Baseline and Monitor System And Detect Anomalies & CSA 8 Manage System Performance if Degraded by Cyber Events**
System Security Engineering Analytical Sequence

Architecture
1) CSA 5 Partition and Ensure Critical Functions at Mission Completion Performance Levels
2) CSA 6 Minimize and Harden Attack Surfaces

Mitigation
3) CSA 7 Baseline and Monitor System And Detect Anomalies
4) CSA 8 Manage System Performance if Degraded by Cyber Events

Protection
5) CSA 1 Control Access
6) CSA 2 Reduce System Cyber Detectability
7) CSA 3 Secure Transmissions and Communications
8) CSA 4 Protect System Information from Exploitation

Recovering
9) CSA 9 Recover System Capabilities
10) CSA 10 Actively Manage System Configurations to Counter Vulnerabilities At Tactically Relevant Speeds
CSE Scorecard Assessment Process

• **CSE assessment** occurs during the 21 day Document Review and commenting stage within the JCIDS **Deliberate** process.

• **Requirements Sponsors** use the CSE Scorecard to document that appropriate **CSAs** are in requirement’s documents.

• **CSE analysts** use the CSE Scorecard to assess ICD,CDDs & CPDs with Joint interest.
The Cyber Survivability Endorsement (CSE) will ensure ICD exemplar need statements incorporate the projected cyber threat based on a Cyber Survivability Risk Category assessment.

The CSE will ensure JCIDS ICD guidance points to “exemplar” Cyber Survivability performance measures with sufficient detail, enabling comparative measures to identify fundable, timely, feasible, secure, and preferred solutions.

The CSE will provide guidance to the requirements community to ensure tailored performance measures within the Draft CDD, Test and Evaluation Master Plans (TEMP), and the Request for Proposals (RFP) are consistent with ICD and specific cyber threat assessment at Milestone (MS) A.

CSE will ensure endorsed Cyber Survivability performance measures are sufficiently detailed to be measurable and testable.
Cyber Survivability Provides an Integrated Framework

Risk-Managed, Measureable, Testable, and Implementable Cybersecurity Requirements
Win-T Passed Adversarial Cyber FOT&E
 • Directed by AT&L to change approach
Change of Approach
 • Cybersecurity part *systems engineering* vice separate solution
 • PM developed Tech Roadmap, responsive Vendors & instituted agile programming, incremental capability / patch drops
 • % Fix Effectiveness was key metric!
 • Assumption of breach: Lowest level of trust between SoS
 • *Independent and continuous testing* (JHU-APL) for fixes & capability drops
 • Level of knowledge required was not complete in Program Office or Vendors
 • On the Spot Test & Developer fixes
 • Development of threat models, with > 10 million threat simulations

RMF Security Controls and Cyber Survivability Attributes: *only part of the solution*
Asymmetric Warfare: Excess Armor Doesn’t Help

Kinetic Warfare is a modern Goliath
- Strikes fear in the heart of Adversaries
- Survivability / Armor, weapons & support cost a lot

Cyber is like David & his Slingshot
- Another Warfare Domain
- Armor doesn’t work well
- Offense is Cheaper
- Disruptive Technology
• GAO Audit: DHS $6 Billion “Einstein” IDS Not Effective
 • Does not scan for 94 percent of commonly known vulnerabilities or check web traffic for malicious content

• Multiple Denial of Service Vulnerabilities in Cisco Adaptive Security Appliance (ASA) Software: firewall, IPS, endpoint security (anti-x)
 • More than the Router it protects!

• AFRL Avionics Cyber Hardening and Resiliency Manual:
 • **Attackers can use Security functions against you!**
 - Prevent Decryption of Data
 - Use Malware Detection to cause Shutdown
 - Use Monitoring System itself for Access to System

“Could protection add a vulnerability by adding features with unknown susceptibilities that an adversary could exploit or by causing the protection to trigger falsely?”
Understanding Offense (Testing) is Key to Defining Sufficient Survivability

*Not possible to prevent all high-tier cyber attacks!

Resilient Military Systems and the Advanced Cyber Threat

Defense: Solutions

Offense: Test Tools / Weapons

Figure 3.2 Graphic Illustration of the Complexity of Software Required to Defend and Attack our Systems. Very Small Changes (Even Single Bits) Can Cause Major Impacts to the Operation of a System
OODA:
Offensive Cyber vs Cyber Defense

Col John Boyd

Have to get inside your opponents OODA:
Countermeasures, Signature, Maneuverability
Cyber Survivability Courses of Action (COAs)

COA: Conventional Assumptions
- Armor (Flying Tanks / Diminishing Returns)
- Balance Performance & Survivability Engineering
- Don’t Ignore Technological Change
Cyber Survivability COAs

COA: Offense vs Defense

- Maneuverability Metric
 \[Ps = \frac{V(T-D)}{W} \]
- Red / Blue Teaming / Constant Practice
- Mission-based Cyber Risk Assessments (i.e., Cyber Table Tops)

Designs Focused on Attack Are More Survivable
Red Teaming is a Way of Life

Simian Army

- Kill/inspect running instances
 - Chaos Monkey
 - Janitor Monkey
 - Security Monkey
 - Conformity Monkey
 - Chaos Gorilla*
 - Chaos Kong*

https://github.com/Netflix/SimianArmy
https://github.com/Netflix/security_monkey

Chaos Monkey randomly terminates virtual machine instances and containers that run inside of your production environment. Exposing engineers to failures more frequently incentivizes them to build resilient services.
Cyber Survivability COAs

COA: Emergent Technology

- Automation Tools / Artificial Intelligence
 - Cyber Grand Challenge
- Faster OODA with Machine Speed
- Focus on Attacking (Yourself & the Adversary)
Cost of Cyber Survivability? Resilience vs Perfect Design

Airborne Unmanned Sensor System (GAUSS) Cyber Resilience Demo - Georgia Tech, UVA & FAA

• 3 different computer boards
• 3 separate operating systems
• 3 versions of the security software

High-Assurance Cyber Military Systems (HACMS) - DARPA

• 5 years in Development
• Only Critical Control Systems
• Only 1000's SLOC

Survive Every Attempted or Successful Hacking Attempt!
At a Great Cost / Schedule!

Scientifically Proven Secure Code
Examples:

- **Section C: Statement of Work - [SOWxxx1]** The contractor shall develop and update mission criticality analysis(-es), vulnerability assessment(s), risk assessments(s), and identification and countermeasure implementation(s) for **Mission-Critical Functions**, the failure of which would result in either **Catastrophic** (Level I) or **Critical** (Level II) compromise of mission capability.

- **Section C: System Requirements Document - [SRD001]** For critical components of Level I Mission-Critical Functions, the system shall establish basic protection requirements unless justified by a **cost-benefit analysis** approved by the government. Those basic protections shall include:
 - Establish **least privilege** using distrustful decomposition (**privilege reduction**) or a similar approach to move Level I critical functions into separate mutually untrusting programs.
 - Physical and logical **diversification** of critical components for Mission-Critical Functions which require **redundancy** to meet reliability or safety requirements.
 - Physical and logical **diversification with voting** to establish trustworthiness of selected Level I Mission-Critical Function components.

Cyber Survivability Best Practices: If I were a (Rich Man) PM

- Stand up Integrated Cyber Warfare Engineering Group / SSEWG
 - Testers, SwA, Logistics, IT, Intel, EW, Users and most of all Hackers
 - Train them with the pros (UARCs, FFRDCs, NSA, National Labs)

- Immediately conduct regular MBCRAs throughout lifecycle

- Build team a Lab were they can Attack systems and Learn

- Use Cyber Survivability Guidance to develop requirements:
 “Survive a zero-day attack on mission and flight computers”

- Invite Red Teams from day one: Use the Cyber Ranges

- Reward cost-wise solutions & deletion of excess Armor

A rich man is nothing but a poor man with money
– W. C. Fields

Unified Acquisition: RMF, T&E, PP/SSE, Intel, CSE
Critical Program Information
- Anti-tamper

Mission Critical Components & Functions
- TSN / SCRM

Cybersecurity
- Resilience
- Survivability
 - RMF
 - Red Team

Security

System

Integrated Cyber Warfare / System Security Engineering

HW / SW Assurance
Phys/Op/Info/Pers/ComSEC
Don’t Just React to New Cyber Threats

• Must PROACTIVELY ADAPT to new cyber threats
 • Must get inside of the Cyber Attacker’s OODA!
• **Sustaining Cyber Survivability** requires PROACTIVE Resourcing, Design, Continuous Test, Life Cycle Sustainment Plans, and Ops & Maintenance procedures

Cyber threats will continue to increase

Agile Cyber Survivability
SSE & Test

Unsustainable
Requires Continuous Improvement
Questions?
Additional Related Resources

• Cybersecurity Community of Practice (COP)

• Cybersecurity and Acquisition Lifecycle Integration Tool (CALIT)

• Cybersecurity Black Card
Contact Info

DAU Cybersecurity Enterprise Team

• Vinny Lamolinara
 240.895.7382
 Vincent.Lamolinara@dau.mil

• Roy Wilson
 240.895.7328
 Roy.Wilson@dau.mil