ACQUISITION PROCESS

IMPROVEMENT

Mission Possible ...
With Good Requirements

uppose that you gave a dozen
contractors a single require-
ment: “Build a vehicle to cross
the English Channel.” What
would you get?

It might be something that would
fly—a balloon, a helicopter, an air-
plane, or a rocket. It might be some
kind of a boat or barge. Or it might
even be a submarine or something
that crosses on the sea bottom. But
whatever you get might not be big
enough, fast enough, or carry
enough people or cargo. It might be
easily detectable and too vulnerable
to hostile fire. It might be too ex-
pensive. It would meet your stated

Wayne Turk

ten in complete sentences.

Use active voice and good grammar.

A requirement must stand alone as a com-
plete requirement.

Requirements must be clear, understand-
able, and unambiguous.

Don't combine requirements using words like
and, or, also, with.

Avoid using etc., which opens the way for in-
terpretation.

Shall, will, and must make requirements
mandatory.

Avoid terms that invoke possibilities: may,
might, could, should, perhaps, and proba-

Requirements That Get Results

* Each requirement must be concise and writ-

terms: greatest extent possible, maximum,
minimum, state-of-the-art, flexible, user-
friendly, efficient, several, improved, adapt-
able, adequate, and simple.

Each requirement must be verifiable (think
testable, but there are other verification strate-
gies).

Don't gold plate requirements.

Avoid wishful thinking or impossible goals.
Do not design the system or product in the
requirements; just give the results required,
not how to get those results.

Use the same level of granularity for each
requirement.

Ensure that requirements are not contradic-

requirement but not all your needs. bly.
Why? Because it takes a good com- |,
prehensive set of requirements to
get the right final product that meets
the users’ needs.

Don't use words like except, if, when, unless, * Ensure that requirements are organized,
or but, which provide escape clauses.

¢ Use defined terms such as no greater than
or no less than. Avoid vague or undefined

tory or mutually exclusive.

structured, and numbered.

Nobody would ask for something

that is based on a single requirement (although there
might be rare times when you could). There are usually
hundreds or even thousands of requirements. But given
the way that some of those requirements are sometimes
submitted, there might as well be only one. Too often, re-
quirements are poorly written. They are ambiguous, vague,
or not understandable. There may be contradictory re-
quirements. And there may be ones that are not feasible
technically or financially.

Anatomy of a Good Requirement

What constitutes good requirements and how do you de-
velop them? This article cannot be comprehensive, but
the following should give you a working knowledge of
what constitutes good requirements and how to develop
them, whether you are the one who has to write them or
the one who must build to them.

Turk is a retired Air Force lieutenant colonel and a manager with SRA
International supporting National Guard Bureau information technology
projects and distance learning classrooms. He has supported projects for
DoD, other federal agencies, and non-profit organizations. Turk is a
frequent contributor to Defense AT&L.

Defense AT&L: Septemlber-October 2005 20

Be Necessary

The first characteristic of a good requirement is that it
is absolutely necessary. With today’s fiscal constraints,
there is rarely any room for nice-to-have, desired, or
frivolous requirements. A requirement like “the gross
takeoff weight of the aircraft shall not exceed 160,000
pounds” is imposed for a reason. It might be based on
runway surface restrictions, deck restrictions on an air-
craft carrier, or some other constraint. Another part of
necessity is the need to solve a problem. For example,
a requirement to have an individual ID other than a so-
cial security number was necessary for DoD’s electronic
medical record. While the SSN should have been
enough, it turned out that there were too many errors
and potential problems.

Be Correct

The requirement must be accurate as to what the product
needs to deliver. The normal source of information is the
customer or end user. Only a knowledgeable user can de-
termine if a requirement is correct. That’s why having users
and functional experts involved throughout the require-



ments process is a very good idea. It can save a lot of pain
and wasted effort. Otherwise you are just guessing.

Be Unambiguous

Requirements must be unambiguous. Multiple readers
should come to the same understanding of what each
means. If a requirement can be interpreted more than
one way, you are in trouble—chances are that the devel-
oper or builder will interpret it the wrong way. Terms like
“user-friendly,” “fast,” “easy,” “flexible,” “state-of-the-art,”
“maximize,” “minimize,” or “efficient” mean different
things to different people. Avoid them like the plague.
Don’t allow the customer or user to include them. Get a
specific definition of what is really needed—and get it in
simple language.

”

Be Attainable

All requirements must be feasible, attainable, and achiev-
able. These words are almost synonymous and, in this
case, mean that the product can be produced with today’s
technology and with the time and money available. A few
years ago, stealth technology or wireless computers were
not technically feasible. Advancements in technology
rapidly change what can be done, so a little flexibility is
needed. Who knows, within the next few years a Star
Trek phaser or transporter may be feasible. But don’t get
ahead of technology.

Be Orderly

The requirements for any project must be prioritized. This
priority is normally set by the end user, but the program
manager may have a say. That is especially true when
the user sets the same priority on a number of require-
ments. Along with operational needs, other factors can
influence priority. For example cost can play a huge role.
If meeting one requirement will cause the expenditure of
75 percent of the budget, you are probably not going to
have that as your highest priority. Technical risk and sched-
ule impact are other influencing factors. You may have
to weigh these factors and work with the users to make
them understand the effect on priorities. And if you are
the user, be willing to listen. You want the product to be
what you need and can use.

Be Measurable

Another necessary characteristic is that all requirements
must be quantifiable, measurable, and verifiable in some
way—through inspection, analysis, demonstration, sim-
ulation, and testing, among others. In most cases, we look
toward testing, but that can be very expensive and time-
consuming. A requirement for size is a perfect example
of one that is easily quantifiable and measurable. Inspec-
tion can determine if a tank will fit on an aircraft. A trained
soldier could be used to verify by demonstration whether
a radio is repairable using the provided documentation
and available spare parts. Computer simulation can pro-
vide answers without destroying components. Testing may

21

be something as “simple” as firing a missile at a target,
or it may require weeks or months, as in the case of in-
tegration testing of complex software that has to interact
with other software applications. Just remember that every
requirement must be verifiable in the most expeditious
and least expensive manner possible.

Be Organized

Verifiable is related to traceable. While especially critical
in software development, in any project you should be
able to trace a requirement from identification through
development to verification. Requirements need to be
written with the same terminology and the same stan-
dards throughout. It also helps for them to be organized
and grouped into defined categories. This allows you to
find duplications, inconsistencies, and contradictions. For
software, linking to the design elements, source code, and
test cases can be a time-consuming but important func-
tion. If you can’t link it from beginning to end, how do
you know whether you have met the initial requirement?

Be Results-Oriented

Finally, requirements must be results-oriented. The ob-
jective of the complete requirements package is to pro-
vide a product that meets the users’ needs and/or solves
a problem. It doesn’t have to look good, involve the lat-
est technology, or do all kinds of extra things. It must pro-
vide the results and the product that are wanted. If a radar
system can track a hundred targets of a specified size at
a defined distance but can’t present the data in a way
that is understandable, it doesn’t have the results that are
needed by the user, and it will be deemed a failure.

The Requirements Package

Some type of a formal requirements package is neces-
sary. In most government agencies, there are specified
documents for the task. It may be a system requirements
specification, functional requirements document, opera-

|1'\

k._‘ fioften raqulramants are

- ly written. They are
amblguousRvaLue, or not

l uIﬁ':Ie}E USGIE, There may be
cuntmdiu 0Ty ulremanté’
And t‘.hare LAY be r:meﬂ thide
are noi ,,..;'. A r:hniua]ly or
cost-Wiss] , @

L

\

Defense AT&L: September-October 2005



v
tnow if you are building

the right end item.

i & j

tional requirements document, or some other similar doc-
ument or series of documents. Whatever it is, it will be-
come the bible for the project. As mentioned earlier, it
needs to be organized with requirements grouped in some
logical fashion.

The project will also need a tool for tracking requirements
from initial identification through deployment. Your or-
ganization will want to look at what tool best meets your
needs—preferably one you already own to avoid incur-
ring extra costs. You want a tool that allows identification
and tracking throughout the process and can provide an
audit trail of all changes, who made them, and when they
were made. It should have the capability to sort in dif-
ferent ways. For a small project, a simple spreadsheet
would probably work fine, but for a large and complex
program with hundreds or thousands of requirements,
you need a tool designed specifically for requirements
management. But however you track requirements, keep
the audit trail up to date. Keep a record of both current
and historical requirements, including any that are deleted
because many times requirements resurface.

Scope creep and changing requirements can be slow poi-
son to a project. A simple change here can lead to an-
other there until the project is in deep trouble, and the
final product bears only a faint resemblance to what was
originally planned. These are insidious problems that can
cause schedule slips, cost overruns, and unhappiness for
all concerned. Yes, some flexibility is needed, especially
with a project that stretches out over time. Needs change,
as does technology. Organizations restructure or reorga-
nize. Vendors come and go. Budgets wax and wane. Cus-
tomers and their level of support may be in flux. All of
these things happen, and you must accept some change—
but try to keep changes to the requirements to a mini-
mum.

Potential Traps

There are a number of obvious and not-so-obvious traps
that a requirements writer can fall into. The most obvi-
ous is poor word choice, which leads to ambiguity. Does
the following requirement say what is really meant: “The
fire alarm shall sound when smoke is detected, unless

Defense AT&L: September-October 2005

the alarm is being tested or the engineer has suppressed
the alarm”? That one could lead to a very dangerous sit-
uation.

Rambling requirements can also cause confusion, espe-
cially when terms are not defined well or they have un-
clear antecedents. Remember, clarity is your goal. “Pro-
vided that the designated data from the specified columns
are received in the correct order so that the application
is able to differentiate among the data, the resulting sum-
mary data shall comply to the required format in section
2.3.1.” I give up—what does that mean?

Supplying too much data or being too specific may force
the design of the system into a predetermined path and
stifle innovation. This happens frequently and is usually
marked by naming specific required materials, compo-
nents, software objects, or database fields. In some cases,
requiring a specific component is necessary for compat-
ibility, maintenance, cost savings, or supply capability;
but be alert, and don’t fall into the trap of requiring some-
thing just because you like it or think that it would be a
perfect solution.

Beware of wishful thinking. Nothing is 100 percent reli-
able, able to handle all unexpected failures, able to run
on all platforms, or is guaranteed upgradeable to all fu-
ture versions. You can see the common theme: “all.” Just
as bad are “none,” “zero,” and “never.” “The brakes will
be 100 percent effective in normal situations.” “The net-
work shall handle all unexpected errors without crash-
ing.” Dream on; it isn’t going to happen. While it is pos-
sible to write requirements for 100 percent reliability in
some products, it will require redundancy (usually multi-
ple redundancy), and they will be expensive to build.

Without good requirements, success is hit or (more fre-

quently) miss because you really don’t know if you are

building the right end item. Sure, it’s time-consuming to

write good requirements, but it’s well worth the effort be-

cause time spent in the beginning can actually save time

later. Good requirements writing comes with practice,

thoughtful consideration, and plenty of review and dis-

cussion. And by following the basic rules, of course:

= Keep users involved.

® Develop and refine requirements.

= Define and use consistent terminology.

® Organize requirements.

® Monitor/track development and changes.

= Document all requirements and changes and why they
changed.

= Make requirements management one of your repeat-
able processes.

The author welcomes comments and questions. Con-
tact him ot wayne_turk@sra.com.

22



