RECOGNIZE RISKS EARLY

SOFTWARE ACQUISITION
MANAGEMENT

glumes have been written about
Acquisition management, and
part of that mass of information
discuszes software management.

The problem with software acguisi-
tion management information is that
itis voluminous and scattered all over.

In law school, some of the most
popular little books are the *nutshell”
series published by West Publishing
Co.; Contract Law in a Nutshell, etc,
The objective of this article is to pro-
vide you with a nutshell capsule sum-
mary of information you need for soft-
ware acquisition management. [hope
violl find it useful.

Why Software Management
Is Difficult

Software management s difficuls
because of uncertainty and risk (big
surprise?]. [t's usually very difficult 1o
recognize software risks as they sur
face. You penerally see software risk
later, sometimes much later, when ltls
no longer a risk but has become a
problem and costly or even impos-
sible to correct. But, you should see it
and plan for it much eardier. The soft-
ware risk driven problems are usually
management, nat technical. During
acquisition, we seldom consider the
things that “kill” ws later. We wear
cost-proposal blinders. Acquisition

Mr. Dobbins s o Prvessor of Sys-
tems Management at the Defernse Sys-
tems Management College and Course
Director for the Management of Soft-
witre Acguisition Course

Program Manager

In a Nutshell

James H. Dobbins

managers need o do eight things
better.

Eight Cost-Proposal Blinders
1. Use metrics properly. Linderstand
metrles implications.

2. Understand the implications of
software process capabllivy maturity.
3. Understand when we doand don't
need an independent verification and
validation contractor.

4. Lnderstand system performance
implications of softwane quality.

5. Don't let low software cost blind
us tovits potential effect on the system.
6. Do software requirements a lof
better.

7.Learn how 1o build visthility
requirements imfo the RFP/Contract
8. Learn how 1o establish sensible
software source-selection criteria.

Twenly-three Sources of
Software Risk and Uncertainiy
Having done those eight things bet-
ter, acquisition managers need to un-
derstand the following 23 sources of
software risk and uncertainty.

1. Government and contractor lack
of understanding of the effect of soft-
Ware process moturify.

2. Lack of software experience in top
management. Ignorance of the law is
N EXCUSE.

3. Lack of understanding of when,
how and what to measure (software

metTics).

4. Lack of understanding of
how best to get current infor-
matlonAvisibility.

During acquisition,
we seldom consider
the things that “kill”
us later. We wear cost-

proposal blinders.

Jonuary-Februory 1994

5. Lack of understanding of how to
usg measurement (metrlc) informa-
tion.

. Lack of understanding of full spec-
trum of contractor testing.

7. Lack of understanding of how to
utilize the test concept In software
fully.

8. Lack of understanding of the fun-
damental and significant differences
between software and hardware con-
cepts for common terms such as rell-
abily and availability,

9. Failure to incorporate proper rigor
and knowledge Into sounce-selection
criteria.
10.Lack of understanding of how to
plan for software risks so the risks stay
risks instead of becoming problems.
11.Lack of understanding that soft-
witre [sn't magic.
12.Lack of understanding how soft-
ware fits into the system engineering
process.

13, Failure to understand software ar-
chitecture and the effects of changes.
Why you can add a window to the top
floor of the nine-story software build-
ing, but vou can't add a basement.
14 Lack of understanding that soft-
ware engineering is a discipline; a
process.,

15.Lack of understanding of the im-
plications of insufficient time allocated
for: Software Requirements, Software
Design, Concurrent Engineering, [n-
Process Quality Analysis, Design for
Reuse, PDR/CDR, Ermor Correction,
Error, Analysis and Error Prevention.
16. Lack of understanding why highly-
structured languages like Ada are good
for the DOD software engineering en-
vironment where most developers are
process immature,

17.Lack of understanding that good
software development is event driven,
not schedule driven.

18.Lack of understanding of the soft-
ware acquisiton lile-cycle activities
and their purpose.

19. Abdication of decision making to
contraciors because we don't want (o
deal with software issues.

20, Lack of rrust of pood contractors.
21.Too much trust in less-than-com-
petent contractors.

Progrom Maonager

22. Fallure to make sure yvou have
systems engineering capability in the
program office staff,

23 Letting esoteric technology issues
cloud vour software decision making
ability.

Twenty-nine Rules for

Managing Software Acquisition
The 29 rules for managing software

acquisition are as follows:

1. Leam not to be afraid of software.
Put your arm arcund it and glve it a
hug.

2. Understand and manage the soft-
ware development process.

3, Understand the greatest strength
of software: flexibility.

4. Understand the grealest weakness
of software: flexibility.

5. Learn and recognize the software
Izsues that can kill vou,

6. Understand that the software de-
velopment process is manageable as
is any engineering process.

7. Learn the Importance of software
configuration management.

8. Learn the different kinds of soft-
ware tests, and when and how they
can be used best.

9. Letthe requirements definition pro-
cess happen. Don't close it too soon.
Keep the user involved, Understand
how to do pood prototyping.

10. Learn that software requirements
changes after critical design review
[CDE)can kill your system cost, sched-
ule and performance. Don't ket the
user or contractor jerk wyou around
after CDR. Don't jerk the contractor
around afier CDR.
11.Recognize that a software preliml-
nary design review (PDR)orCDR done
too early might as well not be done at
all.
12.Recognize that once you are be-
vomd the software BS spec (software
requirements spec), the user is prob-
ably useless in reviewing software
documents.

13, Never underestimate what a good,
process-mature, software contractor
can da for you to pull vou out of a cast!
schedulefperformance hole.

14 Mever forpet that a process-imma-

ture sofrware contractor will be virtu-
ally useless in pulling you out of a
cost'schedule/performance hole.

15. Mever forpet that if you hire a pro-
cess-immature software contractor,
wour success of failure on the contract
will happen in spite of vour skill as a
program manager, not because of it.
16.Mever forget that software has no
production <yele. The fiest anicle is
“it" and if you fail, you're dead in the
water.

17.Always think risk at every step of
the software acquisition process, Be-
member risk is always a potential.
When the risk event happens, it has
become a problem.

18. Trying to manape performance out-
come is a blueprint for disaster. Leamn
10 MANAQE MIOCESS,

19.Alwavs think software support
(PDS5) at every step of the software
dcquisiton process.

20.Learn that for unprecedented sys-
tems, the waterfall mode] of soffware
development doesn't work. Don't let
DoD-5TD-2167A drive you over that
waterfall in a barrel.

21.Leamn that for unprecedented sys-
tems, you must prototype software as
you have to prototype hardware. It
takes time, but that's the way you
l=arn what reguirements are. Let this
happen and move PDRACDR if you
have to.

22.Learn 1o get your metrlc informa-
tion and software status from your
Ccompuier resource working group
(CRWIG) and monthly reviews, not
just in CDRLs which take oo long to
produce. The data are too old by the
time you pet it.

23.Get software expertlse and svs-
tems engineering expertise in your
program office. even if only on a con-
sulting basis.

24.Understand that commercial off-
the-shelf (COTS) software seldom
wiorks in custom-designed unprec-
edented systems, especially in em-
bedded svstem software,

25.Never incorporate a Non-Devel-
opment Item (ND1) or COTS software
in & system without first having the
contractor evaluate the feasibility in
the intended ermvironment. It seldom

January-February 1994

works as well in the intended environ-
ment as vou had hoped.

26.Never force a certain technology,
like object-oriented design, on a con-
tractor unless you really need It It

can be like asking a roddler to drive c:': <

an Indy 500 race car.
27.Understand that if you deslgn for
reuse, it will cost more. The payback
comes later, possibly on the next
program.

28.Learn to use, and tailor, software
standards, including industry stan-
dards. Read them. Understand what
they require. If you don't need a part,
tailor it our.

29.5et up and use a Computer Re-
sources Working Group. Make sure
they produce and keep up-to-date your
Computer Resources Life-Cyele Man-
agement Plan (CRLCMP). Watch your
interfaces. Get the Interface Control
Working Group (ICWG) in place early
and use them. Make the CRWG inter-
face with the ICWG and other work-
ing groups (WGs).

Recognizing Software Risks

Remember that risks are always a
future consideration. Once a risk event
happens, it is no longer a risk; itls a
problem. How far in the future you
can spota risk isa function of howwell
you do measurement and strategle
planning. We look at risk in terms of
probability and severity. I low sever-
ity, you may not care if it occurs. If
high severity, you had better carea lot,
If high severity, but low probability,
you should always get nervous. Ii the
probability of a high-severty rsk is
notzero, you alwaysworry about when
wour number is coming up. Youw must
build fall-back positions into your stra-
tegic planning. There are questions
you need to ask yoursell about differ-
ent rvpes of software risk.

Feasibility Risks: Can we do the
job? Is the technology there? Can
this contractor do the job? How
much experience does he have? Is
the task unprecedented for this
contractor? Do you know all the
requirements? How sure are you?
Are the users involved in

Program Marager

(

-

(W

Remember that risks
are always a future
consideration. Once a
risk event happens, it is
no longer a risk; it is a
problem.

requirements definition? Do you
have to prototype? Has the
contractor ever done prototyping?
Should you use an acquisition
strategy of evolutionary acquisi-
tion?

Engincering and Producibility: Do
you have to do evolutionary
acyuisition (requirerments not fully
determinable for Block 1)? Canyou
produce a working system for Block
1? Does the contractor have
requisite skills?

Do you have to supplement the
contractor with a directed
subcontractor? What is the
contractor's process capability
maturty? Do you need o do a
Software Capability Evaluation
(SCE) or equivalent? Do you have
a means for dolng a software pre-
award audit? Have you factored
these possibilities intoyvour source-
selection criteria? Who can you get
to do the audit? What is the
comtractor's meaningful experience
with the language (Ada)? In what
environments? Does the schedule

give the contractor enough time for
requirements definition?

Are you and the contractor working
together to minimize post-CDR

3 ‘*_:. requirements changes? What kind

of communications processes have
you set up with the contractor o
address and control technical
issues? Does the schedule give the
contractor enowgh time for design?
[hoyvou understand the contractor's
software test program? Is it
adeguate? Do wou and the
contractor understand which
metrics the contractor is using and
the utility of the informatlon? Does
the contractor management use the
information? Are meaningful
metrics being used in all life-cycle
phases?

How does the contractor select and
use Computer-Alded Software
Engineering (CASE) tonls? Which
ones? Why were they chosen? Are
they force multipliers? ls the
contractor dependent on a
subcontractor? How well do they
manage subcontractors? How do
you know? What evidence? Do you
understand the contractor's
software quality process? Do vou
understand the contractoer's
goltware confipuration man-
agement process?

Cost Risks: Do you expect the
contractor's cost proposal to be
decurae? Why? Whatwill vou doif
it isn't? What if, by the time you hit
CDR, you aire seeing a 40-60 peroent
overrun? What are your fall-back
options? Plan for these well in
advance, because this is likely o
be what happens. Cost estimates
on unprecedented systems are
usually a lot lower than eventual
reality. Wie simply don't know how
to do it better.

One thingthat helpsisawell-written
Statementof Work {S0W). Dovour
strategic planning carly. Plan for
costoverruns and alternate actions
wou must take, Make sure you

lonuary-Febrory 1994

collect the necessary metrics often
to spot potential cost overruns as
far in advance as possible. Always
know the difference between
requirements and desirements.
Mever cut requirements; just
desirements.

Rules to Follow
Follow the next 17 rules to keep
software contracting from "biting™ you:

1. Invoke the desired standards
(DaD-5TD-2167A, DoD-5TD-2168,
MILSTD-1521B and DoD-STD-973,
or industry standards like IEEE-STD-
@82, 1). Invoke these standards in Sec-
tion 3 of the SOW, and anywhere else
you need them, not just Section 2.
Tailor them where necessary; never
invoke “blanket™ standards. Always
know what you are lmposing, and
what wou are tailoring. Read the
standarnds,

2. Watch for pitfalls in chaining stan-
dards between specification docu-
ments. Treat each specification as a
stand-alone In terms of standards in-
wocation.

3. If you want metrics, ask for them.
1i you want specific metrics used, say
so in the RFPAContract.

4. If you want metric data provided,
say when and how and how often.

5. Msk the contractor o describe their
W
—Software engineering environment,

including CASE tools
—Software management, including
subcontractormanagement process
—Software development processes
and tools
—Ermor correction/analyvsis process
—Software test and evaluatlon
process; all of it, at each life cycle
phase.

6. If vou want to sce CASE tool out-
put, say so. What, when, how and
how often.

7. Ifyouwant specific processes used,
sy so.

8.0 you want soflware rool couse
analyses instead of bug fixes, say so.
Alloww time for it Why would you want
this? Because the Industry average is
that 14.7 percent of software error

Program Manager

(bugs) fixes are bad fixes, and fast-bug
fixing can turn your software into spa-
ghettl code overnight, and you won't
have enough money left to recover.

Remember software's blggest weak-
ness — flexibilivy.

9, When you know what you want,
make it part of the source-selection
criteria. Lise the criteria to drive you to
the most capable, not just the cheap-
est, contractor.

A lowest-price software contractor
may be your most-expensive choice.
It may be your best choice. It Depends,
It depends on their software engincer-
ing and quality processes, metrics,
use of CASE tools, and their process
capability maturity. If they are pro-
cess capability immature, don't know
how to use CASE tools, and are low
bidder, run, don’t walk, to the next
contractor in line. You'll be sorry if
you don't. When you get the propos-
als, read them critically. Read between
the hype, between the chest-pound-
ing, and get to the real meat. The rest
they must include because we cxpect
it. But, listen to what they say they
really do. Then do a pre-award audit
or software capability evaluation.
10.In proposal responses:

—Read the Software Development

Plan (5DF)

—Read the Quality Plan

—Read the Configuration Man-
agement Plan.

—Read the Test Plan

—Read the Software Subcontractor

Management Plan.
11.Pay close altention 1o what they
saty about subcontractormanagement.
Ask for their subcontractor manage-
ment plan.
12.Watch out for data rights issues.
13.Look for front-end quality pro-
cesses, [ke:

—Design and code Inspections
—Complexity analysis CASE tools
—Requirements generator CASE tools
—Code generator CASE tools.
14.CAUTION: If they use the Integra-
tlon and System Test phases as the
primary time to find and fix software
bugs, your system very probably will
be late, will overrun cost. and prob-
ably will have unsatisfactory perfor-

mance no matter what you do. If they
skip Unit Test, expect big problems
later, but ones that are, perhaps, not
found until a disaster during opera-
tional test or actual use — hig costs,
and possible Injuries.

15.Look for whether they design for
maintzinability.

16.1f they say they use a development
process, llike design and code Inspec-
tions, go back and ask them to de-
scribe it and how they use the resulis.
Many contractors give lip-service to
good processes but don't understand
well enough to use them properly.
Don't ever forget that no matter how
good a proposal looks, more than 80
percent of the DOD contractors are
software process capabillity immature
{Initial level on SEI scale). It is one of
the most, If not the most, serfous hid-
den risks we face In contracting for
software,

17.CAUTION: Software cost models
are everywhere: COCOMO, REVIC,
PRICE-S, ete. None of the results are
worth anything if you can't get a good
estimate of software size. All the mod-
els are dependent and results are bi-
ased by software size. Software size ks
a sensitive parameter. Therefore, for
an unprecedented system, don't ex-
pect contractors o provide accurate
cost proposals. They can’'t. Neither
can we. Mor, can anyone clse. The
best soitware cost estimate will come
from a technically-capable and pro-
cess-mature contractor with a good
database, who collects good metrics,
and who had experience a few times.
That probably means a contraclor af
the Defined level on the SEl scale. The
process capabllity immature contrac-
tors don't have good databases, or
databases with valid data for estimat-
ing cost. Even if they have a database,
their Immaturity biases the cos? data.

What's All This Stufl Aboor
Moetrics!?

The DoDl 5000.2 requires using
metrics in software management. [t
docsn’t say how, which, when orwhat
for, That's up toyvou. Congramlations!
Metrics are only a number. Their only
utility is in understanding the infor-

January-February 1994

mation baggage that goes o=
along with the number; the implica-
thons; what they tell vou that helps you
make o decistorn. They answer o gues-
tion for which you need an answer.
Con'tlook at metrics as isolated things:
think in terms of sets of data that you
use together to pet a total picture of
Issues which need declsions.

Computing metrics for jis own sake,
or because something is measurable,
or just to check-off a Dol¥ 5000.2
paragraph is a waste of time and
maoney. Good contractors know this.
Process capability immatune contrac-
tors do not. Good contractors com-
pute meaningiul metrics as a matter of
course because it helps them control
thelr processes and make good decl-
sions. They use metrics as a ool 1o
achieve continuous improvement in
thisir processes and control their tech-
nical efforts and costs. Process-imma-
ture contractors compute metrics be-
cause the government makes them;
they whi, complain about the cost,
and most don’t understand implica-
tions of measurements they do take.
They look at metrics as an unneces-
sary cost-driver,

Two fundamental types of metrics
exist. These are penerally classified as
managemernt metrics and guallly
metrics, Don't be confused by the no-
menclature, Both are important o
management and to technical
personnel.

Program Manager

If the slope does not

level off to a very low
value by and after CDR,
you're at big-time risk
for meeting your
threshold (forget about
the objective). This
junkyard dog can bite
hard. When it does,
effects often are

unrecoverable.

Most metrics are utilized best when
presented as trend data as opposed to
point-in-time data. There ane excep-
tlons but this is a pood general rule.

Metrics You Need for Any
Development Program
Reguirements Vilalility, How rap-
[dly are changes being made over time
to software requirements? What isthe
rate of change? Plot the cumulative
number of changes over time and
waitch the slope of that line. Do it for
the entire program, and for each Com-

puter Software Configuration [tem
(CSCI) independenthy. If the slope

* big-time risk for meeting your
threshold (forget about the objec-
tive). Thisjunkyard dog can bite hard.
When it does, effects often are unre-
coverable. It throws you almost auto-
matically into a cost-and-schedule
problem. You and your contractor
must manage this from early on.

does not level off to a very low
\9 value by and after CDR, you're at

Software Size and Size Growth Over
Time. Disapgregate the data. Don't
just look at total size, but alse at the
size dynamics of each component
CSCI; also, each type of code (func-
tlon and language). Keep track of
these values separately for New Code,
Reused Code and Modified Code. Un-
derstand the cost implication of chang-
ing the original projections of new,
modified, and reused code. The total
lines of code may not change, but if
new code goes up, and reused code
goes down, the cost will po up because
it is more expensive 10 bulld and test
new code than to reuse old code. Take
continuous size projections at all life-
cycle phases. The inftial contractor
estimates are usually low, often con-
siderably low. You must match size
growth iwm}ccri-:rns against hardwere
capaciey.

Personnel. Same sort of thing as
software size. Track separately the
changes for total personnel, but also
the mix of experienced and inexperi-
enced. Watch for changes near major
review times.

Computer Attributes. 'What is the
capacity? How 1s the software size
growth affecting the hardware capac-
iry? Require at least 50 percent re-
serve memory. Does the slope of the
software growth curve make you ner-
vous? [f the memory reserve capacity
drops below 30 percent, vou ore in
frouble. It's no longer a future 1ense;
na longer a risk; it has become a prob-
lem. What is the processor speed? Can
the computer speed match software
requirements?

Januany-February 15994

Software Volatility. Don’t wormy
about counting how many trouble re-
ports you have open today. 1t's use-
less information. Rather, what is the
rate of change for the software after
Linit Test? Plot cumulative changes
(trouble reports and requirements
changes) over time for the whole sys-
tem and for each CSCI independently;
also by trouble report severity class.
For trouble reports, at the midpaint of
the computer lesting period, or earlier.
the slope of this cumulative curve
should change rapidly and begin o
approach zeto as an asymptote. If it
doesn't start doing that by the mid-
point, you are in trouble. Get with
your contractor and understand the
problem. s it in one CSCI, or is it
system wide? Probably one or two
CSC1. Work out a plan of recovery.

Complexity. Understand seftware
complexity, especially Cyclomatic
Complexity (also called MeCabe's
Complexity). It is a very powerful
metric. Use a CASE tool to help ana-
Ivze the code. Many analyzers can
analyze Ada. If vou have one that
does, you can analyze the design as
well as the code ifvou areusing Adaas
a program design language (PDL). Un-
derstand that when you compute the
complexity numbser, this unitless num-
ber has 11 implications.

Eleven Implications of the
Complexity Number

1. It is the exact number of indepen-
dent paths through a software CSL
{module).

2.1t is the minimum number of test
cases you must have to test each part
of the module at least once, assuming
the programmer recognizes the inde-
pendent paths and develops separate
tests for each Independent path. (Some
of the CASE tools automatically high-
light the independent paths, and auto-
matically compute the test conditions
viou need to test that path. All the
programmer must do |5 copy the test
conditions into the tests written.)

3. If the number goes above 10 for a
module, the module beging to be er-

ror-prone.,

Program Monoger

4. The higher than 10 the module
complexity number is, the higher the
risk to the system from that module.

5. 1f the complexity for several mod-
ules goes above 30, get somewhat
nervous and take cormective action,

6. 1f the complexity for scveral mod-
ules goes above 40, get really nervous
and take sirong correctivie action.

7. 1f the complexity for several mod-
ules goes above 50, panic. A majority
of the module paths will not be tested
im Unit Test, or any later test; there-
fore, a slgnificant percentage of the
software will be delivered completely
untouched by any test. This is an
enormous, often-hidden risk w your
system, especially if software failure
could have life-threatening conse-
quences.

8. Most process capability immature
contractors don’t understand anything
about software complexity.

9. If a high-complexity module isina
critlcal path, especially a safety criti-
cal path, it is a time bomb waiting to
explode.
10.Look at the complexlty values for
the entire system, and for each CSCL
Compute the average complexity bur
also look at the complexity distribu-
tion curve (a histogram). The average
complexity can be decelving. Look at
how the module complexity values
are distributed from lowest to highest
values.
11.During computer-based testing,
have the contractor compute the com-
plexity and get complexity graphs, be-
fore and after each module change,
intended to fixa trouble report, This is
to ensure the change did not damage
the module structure and drive up the
complexity. This lengthens the life-
time utility of the module and lowers
its total life-cycle cost.

Software Reliabiliry, Wartch out for
this one. Make sure you understand
the implications. Hardware reliability
is & well-understood, valid and useful
discipline. [t is important in under-
standing maintainabillty Issues and
spare-parts provisioning. This reliabil-
ity is usually compured as a mean
time between failure (MTBF) or mean

time to next filune (MTTF). These
values have real meaning for hard-
ware, and it says something about the
hardware itself.

The MTBF is a measure of the ex-
pected time between failures of sys-
tem components. 1fyou have a fighter
aircraft MTBF of 10 hours, and your
average mission duration is 20 hours,
you will not be able to fly a mission.
We need this information for hard-
wane to determine when to expect to
change the hardware. We change
hardware to get it back to its original
condition, because it breaks, Adver
you swap out the broken part, the old
value of MTBF is stlll good.

For software, MTBF doesn't mean
anything except In a gross sense. It
may not be tellingyou anything mean-
ingful about the seftware. There are
many software reliability models that
have been developed and work just
like the hardware models. They are
statistical Bayesian or Polsson mod-
els. They compute MTBF, which Is
supposed to be a measure of the ex-
pected time between failures. If you
have an MTBF of 10 hours, what does
this mean for software? 1s it telling you
anything about the software itself?
Software dossn't breakl, You never
change soffware to get it back 1o its
original condition. Once vou change
software, the prior MTEF measure is
no good.

From where does the data for soft-
ware MTBF come? [t comes from
testing and operational use. Suppose
vou develop a mediocre test and run
the soffware, and you get a ceriain
number of errors. You enter this data
into the reliability model and get a
number that you think represents the
reliabiliry of the software being tested.
Mow develop a different, more strin-
pent test and repeat the process, You
get a different number of errors and,
consequently, a different rellabiliny
number—same software, same maodel.
Are you measuring the reliability of
the software or the test you wrote?
Once vou know what data condition

lanuary-Feboary 19594

Calses an error 1o manifest itself, you
cam cause the error to happen as often
as you want by recreating that envi-
monment. Software is data environ-
ment responsive, and it reacts wo data
Environments.

1t will not fall watll it is asked to do
something it was not properly designed
o do, Lintll vouw kit that condition, 1t
waorks fine and will continue to for as
long as the computer runs. ORce you
find the condition that causes the
software to fail, you can turn your
|{0-hour MTEF into a one-sec-
ond MTBF in a heartbeat.
You don't want the system
to hit that condition during a

dogfight.

This is why software com-
plexity is important. You
must know the different
software paths and know
vou have tested all of them.
High-complexity modules impede vour
ability to dao this, and unexpected op-
erational software failure results, Prop-
erly using things like software com-
plexity analysis is how you control
software reliability; that is how you
manage software reliability. Running
an MTBF model is more of a diversion
than a help.

Don’t make the mistake of asking
the contractor to gl"a.'l: You a E'f'ti‘tfm-
rellabllity number that Is an arith-
metic combination of hardware and
software reliabiliny numbers taken from
statistical models. There isnone. Con-
ceptually, the two components are as
different as comparing apples and or-

anges.

Managing Software Testing

Software testing should include hu-
man testing and computer-based test-
ing. For process-immature conirac-
tors, it is wsuwally confined to
computer-based testing, Hurnan test-
ing is done before Unit Test. Com-
puter-based testing is Lnit Test, Inte-
gration Test, System Test, and all
subsequent contractor and govern-
ment software testing,

Program Manages

If you do good human

testing, your computer-
based testing processes
will be controlled,
manageable, and will
give the management
flexibility needed.

Human testing is desk checking
(almaost worthless): walk-throwghs (can
be good, but you never know in ad-
vance); and, software inspections (the
bsest, with highly-consistent and pre-
dictable results). Inspections, when
done properly. will remove a minl-
mum of 70 percent of life-cycle defects
from the software before Linit Test
Consequently, the traditional com-
puter-based testing processes, instead
of being the primary place to find and
fiz software ermors, become a valkda-
tion phase. This makes your manage-
ment job orders-ol-magnitude easter,
more controlled, and gives you options
you would never have otherwlise.

Process capability immature con-
tractors oftem have not heard of soft-
ware inspections; if they have, they do
not know how to do them property, or
how Inspections can help. All they see
is the cost, not life-cycle payback and
not quality drivers.

If vou do good human test-
ing, your computer-based test-
ing processes will be con-
trolled, manageable, and will
ghve the management flexibil-
ity needed. You can recognize
when vou have tested enough

by the slope on the cumulative
error detection graphs. Without
human testing, all bets are off.

You may be in a scrap continu-
oushy (and don't forget the 14.7
. percent bad fixes); the com-

plexity may grow continuoushy
and exponentially; and. you will test
until there is no time, money or both,
and hope for the best o meet the
threshold.

Put human testing invour RFP and
contract for software intensive pro-
grams. After Unit Test, the oomtracior
should have the software in a configu-
ration-controlled test library, o which
changes are made only with approval
of the Software Change Control Baard
(SCCB), and made only by the Soft-
ware Control group (not the program-
mers), Remember, Lnit Test isthe last
test phase where the focus is inside
the module, After Linit Test, the tests
focus primarily on interfaces, berween
C5Us, between C5Cs, between U5Cls,
and berween software and hardware.
It may be an informal test, but its
Importance should never be underes-
timated.

Errors detected during tests using
the configuration-controlled libraries
should be cateporized by severity.
Have the contractor keep the emor-
detection rate charts for the total sys-
tem, each severity bype, each CSCI,
and each severity type within each
CS5CI. Contractors need that data ag
much as you do, whether they realize
it or not.

lonuary-Febuary 1994

