GET A FIRM GRIP

MUST BOTTLENECKS IN THE
SOFTWARE PROCESS BE

FEARED?

Paradigm Shifts Are Uncomfortable

books The Goal and The Race
stem from the Theory of Con-
siralnis concept. The Goal is
written as fiction with the main
characters using this concept to solve
a series of manufacturing problems.
The Race is a lollvw-on book, but is
more “how " In presenting the
Theory of Constraints concepl.

Memories surfaced after [read
these books. Just pictures from the
past, but these flashbacks wok on
new and disappointing meanings.
Disappointment came as [began o
realize that the Configuration Control
Board (CCB) meetings 1 chalred and
the software development division 1
directed were not maximizing the me-
sources available amywhere close to
the level they could achieve.

I did not understand “bottlenecks.”
constraints of, acconding o The Race,
“"capacity constraint resources.” 1T
know the definition of a bottleneck,
but | did not know what the real
battleneck was in the software dewvel-
opment process | sought to control as
the Chiel of Software Development

L Col Baker s Chigf, Communica-
tions-Computer Systems Services
Branch, Communications-Compuler
Systems Directorate, Aeronautical Sys-
tems Cenfer, Wright-Pafterson AFB,
e,

Frogroam Monoger

Lt Col Joe G. Baker, LUUSAF

and the CCEB chairperson. This was a
small software activity of about 10
government and 20 coniract program-
mers who maintained the application
code on an IBM mainframe. The at-
mosphere in this environment was
casual. Individuals were trusted to do
the job, and this was pood. Manape-
ment opinton of workload was sub-
jective, and this was bad.

Before the CCB, the functional us-
ers would rank, In order, the Problem
Reports and new requirements. Our
programmers reviewed this list, met
with the users, and determined what
could be done in the next release.
Most applications were stovepiped
with ome or two PrOrammers per ap-
plication. 1 mowved our organization
intoe this process 5o the CCB meetings
would not encompass one whaole day
and accomplish only the official ap-
proval of the comtents of a release.
During the CCB. 1 asked each lead
programmer what he or she could
accomplish. The functional users then
openly agreed and the meeting ended.
Though the meeting was short, deci-
sions were made and outpul was
maximized. Most CCB attendees ap-
preciated this process change.

Mfter following this process so far,
do yvou percelve what others and |
considered the constraint in cur sofi-
ware processt The programmers were
viewed as the constraint or bottle-

30

neck. Some of you may be curous
about the testing resources. When we
developed our release schedule, we
blocked off time for testing. From ex-
perence, we automatically set aside a
cermain number of weeks per release.
Qur software process assumed the
test time set askle for each software
release was adequate. [should have
irvested a litle time into the activities
conducted during our test tme and,
thus, possibly increased the number
of changes we included in each ne-
lease. It was now too late. What 1
once viewed with some pride and
satisfaction took on mew emolions,
Paradigm shifts are not painless.

Problems Provide
Opportunities

My point |s that for every problem
there is an opporunity. For example,
the oppoartunity o improve the capac-
ity and speed of software delivery
exisis. This may sound like I'm writ-
ing about manufacturing instead of
software development or softwarne
malntenance; but, in some wavs "sofl-
ware manufacturing” may be a mone
appropriate paradigm.

A bouleneck s an opportunity o
know how many software changes
yvou can insert per nelease, and the
opportunity to control and maximize
throwghput through each component
of your process. For example, when
you attend a crowded music or sport-

September-Cicrober 19594

ing event, don't you experience a se-

rics of bottlenecks leaving the sta-
dium or parking lot? Traffic control-
lers erect barriers, and people al
strategic locations manage the
crowd.

Where are your bottbenecks?
Which ls most Important? Sta-
tistical means exist for determin-
ing these, but [submit that soft-
Wilre manapers, with their staffs,
probably can pick the big ones
out subjectively. Next step,
determine the reason for the
bottleneck. For example,
suppase you selected yvour
software development
svilem as the main
bottleneck. Is the so-
lution w buy an-
other? Stop and
think. Why is it vour
constrainl? Does T need
additional memory or an upgraded
operating system? Do you need o
juggle schedules to add another shifl
during peak times. Before you spend
heavily on new equipment. ask your-
sell how vou ane utilizing your time on
different components of this system.
You may need (o break off a part or
buy a subset of the syvstem on which
o do your protetyping or unit lesting.

I was fortunate to be associated
with a project where individuals
sought to maximize throughput as
each bottlencck was encountered,
Briefly, they costed each change after
determining the requirements by dis-
cipline such as programming, build-
ing, integration, testing and documen-
tation. Since building each release
through the build shop was time-
consuming, they grouped champges to-
gether that used the same software
modules. This reduced compilation
time by the build shop, and shortened
the time the integrators used on the
system to check out the new code.

When the testers did their formal
testing, their standard rests encom-
passed several changes with one test,
rectucing the time spent wsing the ¢riti-

Program Monoger

Identifying and

manipulating your

bottlenecks should
help you sleep at
night. Then again,
you may lie awake
thinking about

them.

cal system. As you might guess, as
soon as one bottlemeck was elimi-
nated another surfaced. However,
they worked these also. Ultimanahy,
they could identlfy potential new
bottlenecks before they eliminated an
old one. This began to influence thelr
splutions 1o the orlginal constraint.
The Goal and The Race go into more
detail about constraints.

Y

Conclusions
To improve
your throughput,
st can hold mieet-
ings, announce goals.
and produce Impressive
metrics o achieve tempo-
rary results. Serious, continu-
Ous process improvement re-
quires obtaining pood. ongoing
feedback and monitoring the
process. The difference is im-
proving throughput once in-
stead of continually. In my
expertence, a software de-
velopment, maintenance or
manufacturing project is
an evolving procass,
People, technology and
reguirements change
vearhy. In some or-
ganizations,
changes occur
monthly, Unless you can
geg and understand your botile-
necks, how can you adjust schedules
and resources effectively? You are
bound o the person who for that
month seems te have the right an-
swers. In the next month, the knowl-
edgeable person 15 wrong because his
or her subjective opinion is not based

upan fact

For the sake of credibility, T will
avold postulating a maxim that con-
trolling bottlenecks will solve all or
most problems. From my experience,
the source of anxiety will be removed
as you begin fo get a firm grip on vour
process. Identifying and manipulat-
ing vour bottlenecks should help you

sheep at night. Then again, you may
lie awake thinking alout them.

References

I. Goldratt, Elivahu M., and Cox,
lefi. The Goal: A Process of Ongoing
Improverment, Morth River Press. Inc.,
Craton-on-Hudson, MNew York, 1986,

2 Goldratt, Elivahu M., REobert E.
Fox, The Roce, Morth River Press,
Inc.. Croton-on-Hudson, New York,
1986

Seprember-October 1994

