
Integrating Cost, Effectiveness, and Stability

51

LESSONS LEARNED

INTEGRATING COST, EFFECTIVENESS,
AND STABILITY

Dr. James P. Ignizio

Various approaches, ranging from conventional cost-effectiveness ratios to
newer multiple objective/multiple criteria models, have been used in an attempt
to systematically factor cost and effectiveness into acquisition decisions. While
this is laudable, we believe that one point has been overlooked: the critical
nature of the inherent stability of the system to be developed and/or acquired.
We often hear about cost overruns; but what we may not realize is that the
underlying cause of such overruns may be something as simple as forgetting
to consider the stability of the system. In this paper we attempt to indicate the
nature and impact of stability in cost-effectiveness studies—and to propose
topics for further investigation.

significant cost overrun—as a consequence
of its inherent instability.

Before proceeding further, let us define
the notion of stability itself. First, stabil-
ity analysis is not the same thing as sensi-
tivity analysis, risk analysis, or reliability
analysis. Conventional sensitivity analy-
sis, risk analysis, or reliability analysis can
be effective for dealing with systems of
limited size and complexity, if sufficient
data (e.g., probabilities of component fail-
ure) exists to support the needs of the
analysis. However, in many of the real
world systems under consideration today,
problem size, system complexity and in-
herent errors (or gaps) in data invariably
exist. Furthermore, these conventional
methods merely estimate the likelihood of
the failure (or degradation) for a given

Whether funding an entirely new
system (e.g., an air defense sys-
tem) or including a new compo-

nent into an existing system (e.g., inclu-
sion of a new class of helicopter into a
rapid deployment system), the goal is the
same—procure a system that provides the
“biggest bang per buck.” To accomplish
this, we generally seek a solution that
minimizes cost yet achieves certain tar-
get levels for a variety of multiple mea-
sures of system performance (e.g., range,
accuracy, reliability, weight, volume,
survivability, availability). Rarely, if
ever, does one see the inclusion of sys-
tem stability as a measure of system per-
formance. And this may explain why
program managers discover that their
system has unexpectedly experienced a

Acquisition Review Quarterly—Winter 1998

52

James P. Ignizio, Ph.D., is a professor of engineering at the University of Virginia and a visiting
professor at the U.S. Army Logistics Management College, Fort Lee, VA. Dr. Ignizio is the au-
thor of seven books, more than two dozen monographs, and more than 250 technical papers,
including more than 90 in various international, refereed, journals. He worked for seven years
in the aerospace and military sector and has taught at Pennsylvania State University and the
University of Houston. His primary areas of interest are intelligent decision systems, artificial
intelligence, financial systems, and applied operations research. Dr. Ignizio is a Fellow of IIE
and recipient of the First Hartford Prize.

system. As such, they result in estimates
of such things as MTBF (mean time be-
tween failures), or the probability of a
particular failure mode, or the impact of
the variation of a given parameter on the
performance of a system.

Stability analysis, on the other hand,
addresses the topic of the “likely worst
case performance” of a system—normally
a system too large, complex, or messy (i.e.,
the typical real world system) to be dealt
with effectively by more conventional
means. Extensive experience (e.g., within
the aerospace sector, the military sector,
and even the financial sector) has shown
that a system having a high degree of reli-
ability can and often will fail as an un-
foreseen consequence of the failure of a
certain combination of components. Usu-
ally, the only way to evaluate such poten-
tially catastrophic consequences before-
hand would be to run a brute force evalu-
ation of all possible combinations of fail-
ures. For any real world system, such a
process would take years, if not centuries,
on even our most powerful computers.

As such, one can think of stability
analysis as a systematic attempt to exam-
ine the likely worst-case performance of
a complex system. In other words, it is an
attempt to account for the consequences
of “Murphy’s Third Law: Anything that
can go wrong will.” In the following ex-
ample, the consequences of limiting the

analysis of a system to just conventional
performance measures is described—
and this may be contrasted to the results
actually exhibited once a prototype of that
system was actually constructed and
tested.

Some years ago a contractor for the
Navy was tasked with the job of develop-
ing an acoustic array for torpedoes. After
carefully determining the various mea-
sures of effectiveness (e.g., range, sensi-
tivity, sidelobe suppression, etc.) and the
cost elements, the contractor—aided by a
group of academicians—tried to deter-
mine the “optimal” system, in terms of
cost-effectiveness. They constructed a
mathematical model of the system and
then computed, by means of mathemati-
cal optimization tools, the solution: the
precise amplitude and phase of the acous-
tic energy to be delivered to each trans-
ducer in the array—accurate to the fifth
decimal point.

The design team went further in their
analysis than is typical; performing a la-
borious sensitivity analysis of the array as
a function of changes in the amplitudes
and phases fed each array element. Since
the mathematical model was nonlinear,
and since the number of array elements
were in the hundreds, they could—of
course—only examine a finite and rela-
tively limited number of combinations of
perturbations in amplitude and phase.

Integrating Cost, Effectiveness, and Stability

53

On paper the solution looked fabulous.
Tthe laboratory consisted of a water tun-
nel in which the array could be tested in
what were close to actual conditions. The
results for the prototype array that had
been fabricated for testing weren’t nearly
so good. In fact, they were awful. The
problem? A slight change in some combi-
nation of seemingly insignificant changes
in two or more attributes could result in a
significant degradation of the array’s per-
formance. If this array design were actu-
ally deployed, it would require the devel-
opment of either super-sensitive receiv-
ers or a major breakthrough in manufac-
turing fabrication tolerances. Either alter-
native would add literally millions of dol-
lars to the cost of the total system (trans-
lation: a cost overrun).

Our experience, over three decades of
system design and cost-effectiveness
analysis, indicates that systems designed
to be “optimal” are surprisingly often more
likely to be unstable than systems that are
more conservative (i.e., less “effective”)
in design—at least on paper.

“Optimal” acquisition decisions, no
matter how cost-effective in the conven-
tional sense, may not be a “good thing.”

GRAPHICAL ILLUSTRATIONS OF INSTABILITY

The reason system stability is so im-
portant, and why it is so easily overlooked,
may be explained graphically. Consider a
very simple problem in which the perfor-
mance of a system is a (nonlinear) func-
tion of a single variable. The output of this
system, as a function of some variable x,
is depicted in Figure 1. The possible val-
ues of x range from 0.00 to 0.20. The
system performance has two main peaks.

The highest is centered at about 0.02 while
another peak (somewhat lower but much
broader) is centered at about 0.16.

Conventional methods of analysis are
optimal seeking. As such, they would de-
termine that the optimal value of x is found
at x = 0.02 (for a performance value—
shown on the vertical axis—of 9 units).
However, should the performance func-
tion be off as little as 0.01 units (i.e., imag-
ine a horizontal shift in the nonlinear func-
tion some 0.01 units to the left or right),
the system performance drops from 9 units
to 0.1 units—a fall of roughly 99 percent!

Yet, had we selected a less than opti-
mal solution, at x = 0.16, the performance
of the system would only vary between
8.4 and 8.5 units. In fact, for a solution at
x = 0.16, the performance function could
shift by 0.02 units (twice that which vir-
tually destroyed
the “optimal”
system), and
still result in a
per fo rmance
level between 8
and 8.5 units.

In a problem
this simple, con-
ventional sensi-
tivity analysis
(e.g., perturba-
tions of vari-
ables and, possi-
bly, the mapping
of the response surface) would likely suf-
fice. However, for larger, more realistic
problems (i.e., those having numerous
variables and in which we have little or
no idea as to the shape of the functions
involved), such an approach might not be
practical.

“Our experience…
indicates that
systems that are
designed to be
“optimal” are
surprisingly often
more likely to be
unstable than sys-
tems that are more
conservative (i.e.,
less “effective”) in
design—at least on
paper.”

Acquisition Review Quarterly—Winter 1998

54

In the next section we present a brief
overview of existing methods for stabil-
ity analysis. In the section following that,
a proposal for an unconventional approach
to stability is presented.

INCLUDING STABILITY IN COST-
EFFECTIVENESS ANALYSIS

Some would claim that all one has to
do to consider system stability is to per-
form a sensitivity analysis on the model.
The problem with this assumption is two-
fold. First, conventional sensitivity analy-
ses are intended, for the most part, for
strictly linear, continuous, problems—and

the systems that are to be considered for
real world procurement or development
are invariably (highly) nonlinear. More
specifically, they are problems of combi-
natorial complexity. Second, even if the
problem is linear (or a linear approxima-
tion seems reasonable), sensitivity analy-
sis is not the same thing as stability analysis.

Sensitivity analysis tells us only the
range over which some solution remains
optimal (e.g., changes in the basis of lin-
ear programming models), or that range
of model coefficient values over which the
solution still satisfies all constraints
(Ignizio and Cavalier, 1994). That type of
information, in itself, tells us little about
the inherent stability of a given solution.

Figure 1. Nonlinear Response Function

Integrating Cost, Effectiveness, and Stability

55

Other analysts have suggested that we
“simply include solution stability” as an-
other objective or constraint—that is, as
yet another measure of effectiveness. That
would be fine if we could determine a way
in which to capture solution stability as a
mathematical function; but there is no
effective way of doing this.

Others would argue that we use “per-
turbation analysis.” In perturbation analy-
sis we perturb the values of various vari-
ables and coefficients in a model, singly
and in combination, and observe the effect
(Fiacco and Ishizuka, 1990; Perlis and
Ignizio, 1980).

For relatively small problems this may
provide satisfactory results. But for prob-
lems more typical of those faced in the
real world, the amount of effort required
would be truly enormous. Consider, for
example, just a modestly sized problem
involving 10 constraint functions, 5 ob-
jective (measure of performance) func-
tions, and 20 decision variables (e.g., the
value for each of 20 rapid deployment
force weapon types). In this problem there
would be some 310 model coefficients and
right-hand side values. If we restricted our
perturbation analysis to just the evalua-
tion of changes in each coefficient and
each pair of coefficients, we would be re-
quired to perform nearly 48,000 evalua-
tions—each of which would require a
large number of sub-evaluations (e.g.,
analysis of the increments in change of
each coefficient or pair of coefficients).
Even then we will have ignored those
combinations taken three or more at a
time. As such, even this modest problem
could not be adequately analyzed by
means of perturbation analysis.

STABILITY ANALYSIS VIA

GENETIC ALGORITHMS

If conventional methods cannot assist
us in an evaluation of stability analysis,
then unconventional approaches should be
considered. Recall the acoustic array de-
sign problem discussed in an earlier sec-
tion. The “optimal” design was unstable—
too unstable to even consider. However, a
“less-than-optimal” design achieved the
desired stability without an excessive deg-
radation in the performance measures that
were promised, on paper, by the optimal
system.

Less-than-optimal conservative designs
would appear to have a greater likelihood
of remaining
stable. Instead
of being located
on boundaries
of the solution
space, or at the
extreme points
of that space,
they tend to be
found in the in-
terior of the
space, and are thus dominated, or ineffi-
cient. Consequently, any changes in the
system, or any errors in the data should
have less impact on these solutions.

A preliminary exploration of an “evo-
lutionary” approach to stability analysis
provides a practical means to systemati-
cally analyze both the effectiveness and
the stability of a solution. In this approach
either genetic or evolutionary program-
ming is employed to produce a popula-
tion of final solutions.

Genetic algorithms (GA) pursue a “sur-
vival of the fittest” search for optimality

“If conventional
methods cannot be
relied upon to assist
us in an evaluation
of stability analysis,
then unconventional
approaches should,
we believe, be
considered.”

Acquisition Review Quarterly—Winter 1998

56

“Inherently unstable
solutions de-evolve
(the reverse of
evolution) to poor
solutions faster than
stable solutions.”

(Davis, 1991; Ignizio and Cavalier, 1994;
Zalzala and Fleming, 1997). Typically,
they utilize a Boolean coding of the solu-
tion variables—and the result is termed a
“chromosome.” Evolutionary program-
ming is essentially the same thing, but uses
real numbers in coding. For example, the
chromosome x = (1 0 1 1 0 0) may mean
that we fund project 1, 3, and 4—and do
not fund projects 2, 5, and 6. We see then
that a “1” in the x-vector indicates that the
associated project is funded, while a “0”
signifies an unfunded effort.

Rather than starting from a single solu-
tion point and conducting an iterative
search, and then moving in the direction
of local optimality, genetic or evolution-
ary programming begins with a popula-

tion of solutions
(tens, or even
hundreds per
“generation”).
These are evalu-
ated for their
“fitness” (i.e.,
the correspond-

ing objective function, or functions are
evaluated) and the “fittest” of the bunch
are considered for “mating” and “repro-
duction.” Choices are made stochastically,
with preference given to the most fit.
Mated pairs may reproduce, via an ex-
change of “chromosomes.” However,
since reproduction is also stochastic, not
all mated pairs will reproduce. Yet another
stochastic element is introduced in the re-
production process; some chromosomes
may be mutated. These operations result
in the population of the next generation.
And the procedure continues until some
termination criterion is reached. The ref-
erences provide further information on
these notions. However, a detailed under-

standing of GA is not needed to appreciate
the proposed procedure.

While global optimality cannot be guar-
anteed, genetic and evolutionary algo-
rithms are effective in finding “very good”
solutions. In addition, the approach is in-
herently parallel, and thus computational
effort is minimized.

Our proposal is simple and straightfor-
ward. Use a genetic or evolutionary pro-
gramming algorithm to solve the problem
under consideration. During the process-
ing of the algorithm, maintain a file of the
top 10 or 20 solutions generated by the
algorithm. At convergence, proceed to ex-
amine this list of solutions for stability.

The question that remains, of course,
is just how to evaluate—in a practical
manner—the stability of a given solution.
Our approach is based upon the follow-
ing hypothesis: Inherently unstable solu-
tions de-evolve (the reverse of evolu-
tion) to poor solutions faster than stable
solutions.

Furthermore, if a genetic algorithm is
effective in evolving a population of so-
lutions toward a high level of fitness, it
would seem reasonable to believe that it
would be equally effective in de-evolving
optimal or near-optimal solutions to those
that are of poor quality. In other words,
we will use the GA on good solutions in
an attempt to see how long (how many
generations) it takes to de-evolve.

The approach that we are investigating
may be summarized via the following
steps:

• Step 1: Model the problem under con-
sideration in a format compatible with
GA (e.g., code the solution representa-
tion, determine crossover, mutation,
and reproduction operators, and pro-

Integrating Cost, Effectiveness, and Stability

57

“Our next step is
to perform small
perturbations about
each of these
solutions so as to
develop a “popula-
tion” of solutions
(all in close proxim-
ity to the original
solution point).”

vide a means for the evaluation of the
fitness of each solution).

• Step 2: Use a GA to solve the prob-
lem; maintain a list of the 10 or 20 best
solutions generated by the GA.

• Step 3: For each of the solutions in the
list of the 10 or so best solutions, de-
velop a cluster of solutions about that
point by means of perturbation.

• Step 4: For each of the clusters in Step
3, use a GA to search for the least fit
solution; and record the number of gen-
erations required to de-evolve to a suf-
ficiently poor solution.

• Step 5: Solutions (i.e., the original so-
lutions used to develop the clusters of
Step 3) that de-evolve the slowest are
assumed to be the most stable. Those
that de-evolve fastest are assumed to
be least stable.

We should elaborate further on Steps 3
and 4. In Step 3 we generate a tight clus-
ter, about each point, by means of random
perturbation of the coordinates of that
point—where each perturbation is held to
a small size. In Step 4 we could easily de-
evolve to a poor solution by moving across
a constraint into an infeasible region.
However, the GA should be set so as to
disallow such moves (e.g., assign any in-
feasible point some very high value). In
this way the de-evolution takes place en-
tirely within the (assumed) solution space.

Our next step is to perform small per-
turbations about each of these solutions
so as to develop a “population” of solu-
tions all in close proximity to the original
solution point.

Following the development of the clus-
ters we would use a GA, on one cluster at
a time, to gener-
ate poor solu-
tions. Our inter-
est is centered
about the num-
ber of genera-
tions required to
de-evolve to
some predeter-
mined level rep-
resenting a poor
solution. Those
clusters taking longest (i.e., in terms of
number of generations) to reach that level
are assumed to be the most stable. For
example, if it took 50 generations for the
cluster about one particular solution (X)
to de-evolve, and only 10 for that about
another (Y), the first solution (i.e., X)
would be considered a far more stable
solution.

How well does this approach work? The
only proper way to evaluate the method is
to apply it to real world problems with
real world data. Obviously, that is time-
consuming. Thus far, we have used the
approach on a handful of actual prob-
lems and found the results, in each instance,
to be very useful in predicting solution
stability.

ILLUSTRATION

To illustrate the concept, consider a
more tangible example: the procurement
of an air defense system. Such a system is
composed of a variety of subsystems and
components, and its actual design is a
problem of combinatorics. These consist
of such things as the choices of missiles,

Acquisition Review Quarterly—Winter 1998

58

missile warheads, radar types, support ve-
hicle types, and so on. Typically, the num-
ber of possible combinations is massive.

A genetic algorithm is a highly effec-
tive approach to problems of combina-
torics. As such, we could use such an
algorithm to generate not just the “best
solution,” but also a list of the top 10, 20,
or so best solutions (i.e., combinations of
subsystems and components forming the
air defense system). We performed such
an analysis for the design of a number of
possible air defense systems, each differ-
ing according to the combination of sub-
systems and components that make up the
system. Using simulation, we then deter-
mined the top 10 candidates (according
to their effectiveness to cost ratios), as
listed in Table 1.

Our next step was to form tight clus-
ters about each candidate solution. This
was achieved by perturbing each solution
ever so slightly: that is, exchange one or
two components in the present solution for
components not in solution. This exchange
is repeated until we have a population of

Table 1: Candidate Air Defense Systems

Candidate Cost Effectiveness Effectiveness/
Cost Ratio

A 50 80.00 1.6

B 48 76.32 1.59

C 52 84.42 1.585

D 54 84.78 1.57

E 49 76.44 1.56

F 53 81.62 1.54

G 56 84.00 1.5

H 57 79.80 1.4

I 56 67.20 1.2

J 59 64.90 1.1

solutions (i.e., clusters) centered about
each candidate solution.

We then apply a GA to each of the clus-
ters (one at a time) and record the number
of generations needed to de-evolve. The
cluster taking the longest is considered the
most stable population, and the original
solution from which that cluster was
generated is selected as the most stable
solution.

What we discovered was that candidate
system A may have had the “optimal” ef-
fectiveness to cost ratio, but it was ex-
tremely unstable. Candidate system F, on
the other hand was, far and away, the most
stable of the 10 prototype air defense sys-
tems. While its effectiveness to cost ratio
may be somewhat lower than that of A, it
likely makes up for that deficiency in
terms of its superior stability. After all,
would the military prefer an air defense
system that is optimal on paper, yet whose
performance can radically be degraded by
the chance combination of failures for a
number of components?

Integrating Cost, Effectiveness, and Stability

59

SUMMARY

In this paper we have explored the no-
tion that cost-effectiveness analyses, in
support of the acquisition process, may be
ignoring an extremely important, if not
critical factor: the inherent stability of the
system. In such problems, stability may
be far more important than such conven-
tional, and comfortable, notions as
optimality (i.e., the “best” cost-effective-
ness). Yet, while debate rages as to what
tool or tools are needed to develop opti-
mal designs, relatively little attention is
paid to the stability of solutions in what

will always be imperfect mathematical
models.

We propose that consideration be given
to the concept of considering solution sta-
bility by means of evolutionary algo-
rithms. While our hypothesis (i.e., that in-
herently unstable solutions de-evolve to
poor solutions much faster than inherently
stable results) has only been explored at a
preliminary level, the results thus far seem
to support the thesis. Hopefully, this pa-
per will encourage further efforts in this
area.

ACKNOWLEDGMENT

This paper was supported in part through an Intergovernmental Personnel Act between the
University of Virginia and the U.S. Army Logistics Management College, Fort Lee, VA. This
paper represents the views of the author and does not necessarily reflect the official opinion of
the Army Logistics Management College.

Acquisition Review Quarterly—Winter 1998

60

REFERENCES

Davis, L. (Ed.). (1991). Handbook of ge-
netic algorithms. New York: Van
Nostrand Reinhold.

Fiacco, A. V. & Ishizuka, Y. (1990). Sen-
sitivity and stability analysis for nonlin-
ear programming. Annals of Operations
Research, 27, pp. 215–235.

Ignizio, J. P. & Cavalier, T. M. (1994). Lin-
ear programming. Englewood Cliffs,
NJ: Prentice-Hall.

Perlis, J. H. & Ignizio, J. P. (1980). Sta-
bility analysis: An approach to the evalu-
ation of system design. Cybernetics and
Systems, 11, pp. 87–103.

Zalzala, A. M. S. & Fleming, P. J. (Eds.).
(1997). Genetic algorithms in engineer-
ing systems. London: The Institution of
Electrical Engineers.

