
DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

392

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENTDEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

393

IRREDUCIBLE TRUTHS
OF SOFTWARE-INTENSIVE
PROGRAM MANAGEMENT

David Cottengim

This article argues that the odds are against a software-intensive program
achieving the goals and objectives established in the initial acquisition program
baseline. By most objective measures of success—cost, schedule, and performance
baselines—almost every software-intensive program proves unsuccessful. Reasons
for these failures are examined and solutions for improvement are discussed.

F or decades the acquisition community has applied standard engineering and
scientifi c principles to improve the professions of software engineering and
program management. The lessons learned from this process have been distilled

into a few succinct, commonly held beliefs. Some of these maxims, applied to software-
intensive program management, may sound familiar:

1. Adding manpower to a late software project makes it later (Brooks & Fredrich,
1975),

2. Hope is not a strategy (Page, 2003), and

3. Real programmers don’t need sleep (Yourdon, 1997, p. 61).

 To focus the theme of this exposition, one more should be added:

4. Almost all software-intensive programs fail.

FAILURE DEFINED

To further investigate maxim #4, a common defi nition of failure is needed. By statute
and regulation, if the estimated costs of a program increase 15 percent above what was

IRREDUCIBLE TRUTHS
OF SOFTWARE-INTENSIVE
PROGRAM MANAGEMENT

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

394

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

in the latest approved Acquisition Program Baseline (APB), or if any milestone from
the latest approved APB schedule is delayed by 6 months or more, then the program
is in breach (U.S.C. Title 10, §2432 and §2433). One need merely replace the phrase
“latest approved APB” with “fi rst approved APB” to illuminate the defi nition of failure
to be used in this article.

The contention of this article is simple: the odds are overwhelmingly against a
software-intensive program achieving the goals and objectives established in its initial
APB. By any objective measure of success, almost every software-intensive program is
probably going to deviate substantially from its initial cost, schedule, and performance
baselines. For most readers, this is not considered news. However, it is important that
we all begin from this common understanding.

CURRENT STATE OF SOFTWARE-INTENSIVE
PROGRAM MANAGEMENT

As one author wrote, managing large projects is a curse you should avoid (Lientz,
1999, p. 250). Even after years of improvement in program management and software
engineering tools and techniques, the profession is still plagued by embarrassing
failures. In a recent study of 250 software-intensive projects with 10,000 or more
function points, only about 25 were deemed successful (i.e., achieved their initial cost,
schedule, and performance objectives) (Jones, 2004, p. 5).

The same study revealed that the following six factors were common in the 25
successful programs:

1. Project planning: “Planning is the answering of the following questions: What
must be done? How should it be done? Who will do it? By when must it be done?
How much will it cost? How good does it have to be?” (Lewis, 2000, p. 49).

2. Cost estimating: “Cost estimating and analysis is that portion of systems analysis
dealing with the tasks of conceptual modeling, output and cost measurement,
verifi cation cost and output prediction, and evaluation and comparison of the costs
of each alternative” (Society of Cost and Estimating, 2005).

3. Measurement techniques: If you do not measure a thing you cannot control it.
“Measurements are the basis for detecting deviations from acceptable performance”
(Florac, 1999, p. 7).

4. Milestone tracking: “A milestone is an intermediate objective that defi nes an
important, measurable event in the project and represents a result that must be
achieved at that point. Clearly defi ned milestones are essential for monitoring
progress, especially in large and/or long-term projects” (Kerzner, 2000, p. 82).

5. Change management: “Change management is an important responsibility of any
acquisition program” (Space & Missile Systems, 2004). Change management must

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENTDEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

395

be applied to all program deliverables (e.g., software, manuals, training materials,
planning documents, requirements).

6. Quality control: Quality control refers to “the operational techniques and activities
used to fulfi ll requirements for quality” (“Defi nitions,” 2005).

While the effective implementation of these six factors may be inherent to successful
programs, they alone are not suffi cient to guarantee program success. There are eight
common reasons cited for the proliferation of program failures (Posner, 1987):

1. Inadequate resources,

2. Unrealistic schedules,

3. Unclear goals and senior executive direction,

4. Uncommitted team members,

5. Inadequate planning,

6. Communication breakdowns,

7. Goal and resource changes, and

8. Interdepartmental confl icts.

The General Accounting Offi ce (GAO) recently reported that a 1999 study performed
by the Standish Group found that about one-third of software development programs
resulted in cancellation. Furthermore, in a series of studies completed through the
1990s, the average cost overrun was 189 percent, while the average schedule overrun
was 222 percent of the original estimate. On average, only 61 percent of the projects
were delivered with originally specifi ed features or functions (General Accounting
Offi ce, 2004, p. 9).

ATTEMPTS TO FIX THE PROBLEM

To redress this reality there has been a perennial effort to improve the education
and training of would-be and existing program managers (PMs) in the specifi c
skills of program management and software engineering and to implement quality
improvement programs wherever possible. Professional organizations such as the
Project Management Institute (PMI) and industry-accepted publications such as PMI’s
A Guide To The Project Management Body of Knowledge now exist to facilitate making
program management a standardized profession. A subculture of acquisition reform has
evolved within DoD (Cho, Jerrell & Landay, 2000). Defense has been at the forefront

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

396

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

of institutionalizing sound program management principles in its training requirements
for current and future program managers (Department of Defense, 2002).

Congress is even helping by mandating implementation of software acquisition
process improvement programs. The National Defense Authorization Act of 2003
states, “The Secretary of each military department shall establish a program to improve
the software acquisition processes of that military department” (section 804, Public
Law 107-314). The DoD policy, as expressed in a February 20, 2004, policy memo
issued by then Under Secretary of Defense for Acquisition, Technology and Logistics
Michael W. Wynne, has reiterated the need for a more formal, structured, and robust
systems engineering approach to all programs regardless of acquisition category.

Congress is even helping by mandating implementation of
software acquisition process improvement programs.

These overt efforts to create and require formalized program management training,
revise acquisition guidelines, implement sound program management techniques,
require software engineering plans, and improve the software acquisition process
are admirable, yet these efforts alone will be insuffi cient. Poor program management
techniques, sloppy software engineering, and non-repeatable software development
processes are not the proximate cause of most major software program failures. The root
cause of the eight reasons for failure listed above is not a lack of quantitative program
management or software engineering skills. Nor is the continued use of immature and
unstructured software development processes to blame. Post-project analysis has taught
us that failures are more behavioral than quantitative (Kerzner, 2000, p. 175). If we are
to solve the problem of program failures we must fi rst accurately diagnose its genesis.

SUB-OPTIMIZATION

One might characterize highly complex acquisition environments as sub-optimization
engines. Complex acquisition environments are structured to produce sub-optimal
results (presumably an unintentional situation). It is virtually impossible to produce
optimal solutions in an environment that is characterized by:

 Frequently changing strategic directions,

 Turnover in senior leadership,

 Rapidly changing technology,

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENTDEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

397

 Entrenched legacy business practices,

 Freelance development outside the control of the standardization efforts,

 Massive documentation requirements disconnected from actual program realities,
and

 Confusing and confl icting budgeting and contracting requirements and procedures.

These are all known problems. These are areas of program management and
software engineering which receive extensive coverage in professional training courses.
Regrettably, even when all these known environmental complexities are diligently
addressed, we still see programs either fall short of initial expectations or fail.

With so many preventive measures being taken to ensure success, why then do
software-intensive programs continue to produce sub-optimal solutions?

THE ACCOUNTABILITY MYTH

For every PM there will come a time when the inevitable conclusion is reached:
nobody appears to be in charge of whatever mission your program is trying to
support. Some acquisition organizations have tried to redress this lack of a controlling
authority by assigning specifi c accountability to a PM for success. The mythology of
accountability suggests that by making program managers accountable for outcomes,
they are more likely to take the actions necessary for the program to succeed. The
reality is that accountability does not produce success. Accountability often merely
provides a convenient scapegoat for the inevitable failure produced by environments
that are toxic to success.

Uncertainty over authority coupled with certainty about who is accountable for
failure causes confl ict between PMs and stakeholders. How many times have program
managers been in a meeting where the conclusion was that “X” needed to happen?
Then everyone looked at each other and concluded that they knew of no one who could
make “X” happen. And if such a person did exist, it certainly was not the PM. This type
of situation has been called a “locus-of-authority confl ict,” which is produced naturally
in matrix organizations (Meredith & Mantel, 2000, p. 238).

COLLECTIVELY IMPOSSIBLE DEMANDS

These locus-of-authority confl icts (i.e., nobody is in charge and every stakeholder
wants their individual requirements satisfi ed) lead to another postulate of software-
intensive program management:

In complex acquisition environments, program managers must foster cooperation
among equals.

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

398

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

No amount of training in the technical skills of program management will overcome
the simple truth that, as a PM, you cannot make people do what you need them to do.
This is the root cause of many software-intensive program failures. Stakeholders often
cannot agree on priorities, refuse to standardize business practices, take off on their
own proprietary solutions, or simply refuse to participate in the program.

It should be no surprise that few software-intensive programs ever achieve the lofty
objectives set forth in their initial APB. A reasoned analysis of our current acquisition
environment would rationally conclude that most expectations of contemporary
programs are unrealistic. The cruel reality is that we train PMs and then drop them
in an organizational “shark tank” that opposes many of the principles they have just
absorbed in their training. Program managers often fi nd themselves in a superfl uous
role, accountable yet powerless.

THE PROGRAM MANAGER’S DILEMMA

Game theory tells us we can presume that decision-makers are rational. They are aware
of their alternatives, form expectations about any unknowns, have clear preferences,
and choose their actions deliberately after some process of optimization (Osborne &
Rubinstein, 1994, p. 4). So why do stakeholders often take actions that undermine
the objectives of approved programs? The answer is found in a simple principle: “It
is impossible to maximize two or more functions simultaneously” (Von Neumann
& Morgenstern, 1944, p. 11). This phenomenon has been labeled “the program
manager’s dilemma” (Ward, 2004, p. 54). When stakeholders believe that their goals
are incongruent with the goals of the program (the presumed optimal solution), they
will rationally choose to not cooperate (Bartol & Martin, 1991, p. 61). Stakeholders
often believe that they cannot simultaneously do what is best for themselves and the
approved program. Changing such beliefs and the resultant behaviors will do more for
program success than any level of training or acquisition reform.

THE SOLUTION

How can the behavior of stakeholders be changed so that they will support rather than
oppose the efforts of a program manager? One might think that the logical approach
would be to change the beliefs that give rise to the undermining behavior, but that
is a losing strategy. Beliefs are diffi cult to measure. Behavior on the other hand is
observable and measurable.

Therefore the solution must focus on stakeholder behavior rather than the core
belief systems that cause behavior (Beer, Spector, & Eisenstat, 1990). Behavior can
be observed and rewarded or discouraged as appropriate. Once new behaviors are
adopted, core beliefs and values will be infl uenced by the success the new behavior
fosters. Thus focusing on behavior indirectly infl uences the core belief systems that
need to be affected.

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENTDEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

399

Acceptable behavior (that which advances the objectives of approved programs)
within the organization needs to be encouraged and unacceptable behavior (that
which undermines the objectives of approved programs) needs to be discouraged. If
the punishment for not cooperating is so great that cooperation is the best choice in
the short run, then there is no longer a dilemma (Axelrod, 1984). This link between
behavior and performance has been recognized as part of the proposed National
Security Personnel System (NSPS): “The NSPS regulations provide for consideration
of employee behavior as a performance factor, element, or objective, such as ‘teamwork/
cooperation’ (Federal Register, 2005, p. 7562).

CONCLUSION

The technical, social, and engineering skills required to be a better program manager
or software engineer are necessary but not suffi cient for success with a software-intensive
program. The organizational environment must support the program objectives or the must support the program objectives or the must
program will most likely fail.

The proposed solution presented above presupposes someone in power to observe
behavior and reward or punish stakeholders as appropriate. A PM must identify the
senior leaders who have the greatest potential to impact the ongoing viability of the
program (Pinto, 1996) and obtain their support. This more than any other factor will
determine success or failure for most programs. A PM’s ability to fi nd such support is
more critical than any technique, skill, or tool taught in the classroom.

Obtaining senior leadership support is not a revolutionary concept. Think for a
moment about all the quality or process improvement techniques to which you have
been exposed. Improvement programs all have the same prerequisites for success. They
all require something like:

 Management commitment (Wood & Silver, 1995, p. 166),

 Commitment to perform (Paulk, 1994, p. 47),

 Senior management leadership (Humphrey, 1989, p. 19), and

 Commitment to change; senior leadership must understand and be completely
behind implementing the change (Harry & Schroeder, 2000, p. 281).

Just about any process can work if it has real management support. Process cannot
make up for lack of leadership support, but leadership support can mitigate process
defi ciencies. Do not forget that the success of the program ultimately depends on the
ability to get stakeholders to do the things they often do not want to do. The behavior of
individuals acting for or against the mission objectives controls the chance for success
more than any other professional tool or skill employed on an acquisition program.

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

400

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

David Cottengim is an Accountant at the Defense Finance and
Accounting Service, Indianapolis. He has over 14 years experience
in system development for Department of Defense activities. He is
certifi ed as a Project Management Professional, Certifi ed Software Test
Engineer, Certifi ed Treasury Professional, and Certifi ed Government
Financial Manager. He completed his undergraduate education in
Finance and Economics and his graduate education in Finance and
Management Information Systems at the Indiana University Kelly
School of Business.

E-mail address: DAVID.COTTENGIM@DFAS.MIL

AUTHOR BIOGRAPHY

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENTDEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

401

REFERENCES

Axelrod, R. (1984). The evolution of cooperation. New York: Harper Collins.

Bartol, K. M., & Martin, D. C. (1991). Management. New York: McGraw-Hill.

Beer, M., Spector, B., & Eisenstat, R. (1990, October). Critical path to corporate
renewal. Boston: Harvard Business School.

Brooks, J. R., & Fredrich P. (1975). The mythical man-month. Reading, MA: Addison
Wesley.

Cho, G., Jerrell, H., & Landay, W. (2000, January). Program management 2000: Know
the way, how knowledge management can improve DoD acquisition. Ft. Belvoir,
VA: Defense Systems Management College Press.

Defi nitions of Quality Assurance/Quality Control. (2005). American Society for Quality
website. Retrieved April 25, 2005, from http://www.asq.org/topics/qa_qc.html

Department of Defense. (2002, March). Acquisition career development program.
(DoD Manual 5000.52-M).

Federal Register. (2005, February 14). National security personnel system, 70(29),
7562.

Florac, W. A. (1999). Measuring the software process, statistical process control for
software process improvement. Reading, MA: Addison-Wesley.

General Accounting Offi ce. (2004, March). Defense acquisitions, stronger management
practices are needed to improve DoD’s software-intensive weapon acquisitions
(publication no. GAO-04-393). Washington, D.C.: author.

Harry, M., & Schroeder, R. (2000). Six sigma. New York: Doubleday.

Humphrey, W. S. (1989). Managing the software process. Reading, MA: Addison-
Wesley.

Jones, C. (2004, October). Software project management practices: Failure versus
success. Cross Talk, 17(10), 5 –9.

Kerzner, H. (2000). Applied project management. New York: John Wiley & Sons.

Lewis, J. P. (2000). The project manager’s desk reference. New York: McGraw-Hill.

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

402

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

Lientz, B. P., & Rea, K. P. (1999). Guide to successful project management. New York:
Harcourt Brace.

Meredith, J. R., & Mantel, S. J. (2000). Project management: A managerial approach
(4th ed.). New York: John Wiley & Sons.

National Defense Authorization Act of 2003. (2003). Public Law 107-314, Section
804.

Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge, MA:
MIT Press.

Page, R. (2003). Hope is not a strategy. New York: McGraw-Hill.

Paulk, M. C. (1994). The capability maturity model: Guidelines for improving the
software process. Reading, MA: Addison-Wesley.

Pinto, J. K. (1996). Power & politics in project management. Upper Darby, PA: PMI
Publications.

Posner, B. Z. (1987, March). What it takes to be a good project manager. Project
management journal, 18(1), 51–54.

Project Management Institute. (2004). A guide to the project management body of
knowledge (PMBOK® Guide) (3rd ed.). Newton Square, PA: Author.

Space & Missile Systems Center, U.S. Air Force. (2004, January). Systems engineering
primer and handbook.

The Society of Cost and Estimating Analysis. (2005). The body of knowledge for cost
estimating and analysis. Retrieved April 22, 2005, from http://www.sceaonline.
net/content.asp?contentid=205

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.
Princeton, NJ: Princeton University Press.

Ward, D. (2004, May-June). The program manager’s dilemma. Defense AT&L, 33(3),
54–57.

Wood, J., & Silver, D. (1995). Joint application development. New York: John Wiley
& Sons.

Yourdon, E. (1997). Death march. Upper Saddle River, NJ: Prentice Hall.

DEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENTDEFENSE ACQUISITION REVIEW JOURNAL IRREDUCTIBLE TRUTHS OF SOFTWARE-INTENSIVE PROGRAM MANAGEMENT

403

