
	 35	 Defense AT&L: March-April 2013

‘Technical Debt’ in the Code
The Cost to Software Planning

Don O’Neill

O’Neill was president of the Center for National Software Studies in 2005 to 2008. Following 27 years with IBM’s Federal Systems Division, he
completed a 3-year residency at Carnegie Mellon University’s Software Engineering Institute (SEI) under IBM’s Technical Academic Career Pro-
gram and has served as an SEI Visiting Scientist. He is a mathematician, a seasoned software engineering manager, and an independent consultant.

It is time that “Technical Debt” assessment and measure-
ment be recognized in defense acquisition and procure-
ment and that its anticipation, avoidance, and elimina-
tion be incentivized. Accomplishing this is essential to the
sustainability of the defense software industry. Technical

Debt enthusiasts are themselves in technical debt regarding
its definition. It is time to put a finer edge on this definition and update it. The early, archaic, and
somewhat awkward definition, introduced by Ward Cunningham in 1992, is, “Not quite right code
which we postpone making right.”

Instead, I suggest the following definition: Technical Debt is the organizational, project, or engineering neglect of
known good practice that can result in persistent public, user, customer, staff, reputation, or financial cost.

Scope of Technical Debt
The current scope of Technical Debt as a metaphor for the consequences of neglect in software engineering and
management is somewhat old-style and certainly programmer-centric. This scope of Technical Debt from the view-
point of the programmer is one of software components, code and test activities, and static analysis. However, the
neglect for which the project and enterprise will pay in terms of interest on the debt includes systems and software

Defense AT&L: March-April 2013	 36

engineering and management, systems and systems of sys-
tems, iterative life cycle model dynamics, dynamic analysis,
and finite word effects. So, clearly, the scope of Technical Debt
must be elevated.

Technical Debt is an interesting metaphor. Its utility lies in its
simplicity and ease with which complex software planning and
technical issues can be framed for executives and managers
who may lack the technical background to engage these issues
firsthand. This shorthand method of framing complex prob-
lems leads to loss of underlying detail that can restrict or mis-
direct the identification, analysis, and resolution of software
planning and technical issues among those who do possess
the technical background to engage these issues firsthand.

For starters, Technical Debt involves more than the technical
and engineering dimension; it also involves software engineer-
ing process and management.

The success of large-scale software intensive systems largely
depends on the engineering, management, and process ca-
pabilities, people, practices, methods, and tools of the enter-
prise charged with the requirements determination, design,
development, testing, fielding, and sustainment of systems
and systems of systems. Within any organization, these ele-
ments of success are in various stages of maturity, and their
evolution and alignment may become the source of strategic
software management and continuous process improvement.
At any time, these gaps can be referred to as Technical Debt
when they result in persistent costs and risks to reputation,
economics, mission, or competitiveness.

When these gaps are neglected, whether undiscovered or
consciously ignored, Technical Debt may be incurred.

Technical Debt, then, is the organizational, project, or en-
gineering neglect of known good practice that can result in
persistent public, user, customer, staff, reputation, or financial
cost. Shortcuts, expedient activities, and poor practice contrib-
uting to the initial product launch or initial operational capabil-
ity often are cited as justifiable excuses in taking on Technical
Debt. But, in truth, most Technical Debt is taken on without
this strategic intent, without even knowing it, and without the
wherewithal in capability or capacity to do the job right.

In any event, as the twig is bent so grows the tree, and the
weight of accumulated Technical Debt immediately and con-
tinuously extracts its cost on the organization.

Sources of Technical Debt
Technical Debt is considered written off only when it is elimi-
nated. Draining the swamp depends on understanding and
aligning the sources of Technical Debt in management, engi-
neering, and process.

Sources of Technical Debt in engineering involve neglect in ap-
plication domain understanding, requirements determination,

system and software architecture, iterative multilevel design,
staged incremental development, software development life
cycle, programming language, middleware, operating system,
network interface, and software development environment.

Sources of Technical Debt in management involve neglect in
requirements management, estimating, planning, measure-
ment, monitoring and controlling, risk management, process
management, team innovation management, supply chain
management, team building, personnel management, and
customer relationship management.

Sources of Technical Debt in process involve insufficient evi-
dence of explicit goals and readiness to perform, insufficient
accountability based on work responsibility matrix, insuffi-
cient planning of design levels and staged increments, and
insufficient planning, management, and control of software
product releases.

Some argue that Technical Debt should be limited to inten-
tionally deferred work as though incurring Technical Debt is
a calculated risk. However, in the heat of battle on a project
looking for shortcuts to meet cost and schedule, there is no
calculation. There is only expediency.

Suppose there was a calculation. What would it look like?

Would it accord a cost benefit for rework of deferred effort?
No, doing it right the first time is more cost-effective. Doing
it later, perhaps with less skilled personnel, may mean doing
it yet again and again.

Would it accord a cost benefit if the rework of deferred effort
was never needed at all? Yes, uncertainties that a calculated
risk might consider include banking on the possibility that the
initial effort will become a throwaway prototype or that the
demand for modernization will overtake the project before
the rework of deferred effort is performed.

Would it accord a schedule benefit if function were postponed
or some functionally equivalent shortcut were adopted for the
moment? Yes, doing less work should take less time.

Would it accord a schedule benefit if “going fast” entails aban-
doning the organization’s standard of excellence in disciplined
software engineering and drifting into a stream of conscious-
ness, ad hoc hacking style of programming? No, the ad hoc
programming style will result in a higher defect rate that will
impact testing and fielding. Ad hoc programming does not
deliver superior results with respect to cost, schedule, quality,
and performance. Delivering on these attributes takes engi-
neering. So when thinking about “going fast,” it may actually
pay to go slow.

For those who reserve Technical Debt for intentional defer-
ment of effort, there may be a sort of pride in going against the
grain of good, disciplined software engineering practice—as if

	 37	 Defense AT&L: March-April 2013

their superior skills will permit them to dodge a bullet of some
kind during development, only to patch up the situation later
when the coast is clear. In my experience, the coast rarely is
clear, the rework is ignored or gets done later by less skillful
people, and the interest paid and higher cost to fix later defeat
competitiveness.

Another category of Technical Debt is not intentional and cen-
ters around the “neglect of known good practice.” Perhaps
some feel neglect is too harsh a term; perhaps others reserve
Technical Debt for intentional deferment of effort. In either
case, the result is deferred work with consequences that ex-
tract an ongoing cost and the postponed elimination of which
will cost more than doing it right the first time.

Technical Debt from all sources needs to be on the table when
the full cost of rework is weighed against the cost of additional
functionality or the cost of a modernization program.

Technical Debt, Triggers, and Analytics
Technical Debt is the organizational, project, or engineering
neglect of known good practice that can result in persistent
public, user, customer, staff, reputation, or financial cost. When
adopted, Technical Debt becomes the hole in your canoe. Each
gallon of water bailed incurs additional cost. Each gallon of
water not bailed adds to the sluggishness of the operation.

Technical Debt refers to postponed or deferred work, whether
by intent or by neglect. Incomplete or shoddy work extracts
a persistent cost on ongoing software operations. In addition,
corrective rework costs more than doing it right the first time.

Source Trigger Condition Action
Management M1.

Prioritized goals
Where schedule or cost is accorded priority over
defect free delivery

A Technical Debt conditioning
trigger is set.

M2.
Organization levels

Where the software function is separated from
program management by two or more levels

A Technical Debt conditioning
trigger is set.

M3.
Schedule

Where the number of months planned is less
than the estimated month at completion

A Technical Debt conditioning
trigger is set.

M4.
Cost

Where the budget at completion is less than the
estimate at completion

A Technical Debt conditioning
trigger is set.

M5.
Milestone completion

Where the completion schedule for any
milestone completion planned date is replaced
with a replanned date

A Technical Debt conditioning
trigger is set.

M6.
Headcount and effort

Where overtime, off-the-clock time, and
personnel turnover rate is trending upward

A Technical Debt conditioning
trigger is set.

M7.
Frequency of release

Where the frequency of release is daily or
weekly

A Technical Debt conditioning
trigger is set.

Total Multiple Technical Debt
conditioning triggers are set.

Table 1. Technical Debt: Management, Trigger, Condition, Action

Technical Debt typically is viewed as a problem to recover from
once it has occurred. However, a better strategy is systemati-
cally to anticipate and avoid the conditions that contribute to
Technical Debt in the first place.

The methods to anticipate systematically and avoid Techni-
cal Debt need to be built into the software development life
cycle. The intended outcomes include on-budget, on-schedule
deliveries of defect-free components and systems traceable
to requirements with managed and controlled frequency of
releases that sustain user operations. Project assessment fo-
cuses on the cost, schedule, quality, and performance triggers
that serve as the preconditions for Technical Debt.

Technical Debt is considered written off only when it is elimi-
nated at the source, including management, engineering, and
process. What are the conditioning triggers for each source?

Sources of Technical Debt in management involve neglect in
requirements management, estimating, planning, measur-
ing, monitoring and controlling, risk management, process
management, team innovation management, supply chain
management, team building, personnel management, and
customer relationship management.

The Technical Debt conditioning triggers for management are
shown in Table 1.

Sources of Technical Debt in engineering involve neglect in ap-
plication domain understanding, requirements determination,
system and software architecture, iterative multilevel design,

Defense AT&L: March-April 2013	 38

staged incremental development, software development life
cycle, programming language, middleware, operating system,
network interface, and software development environment.

The Technical Debt conditioning triggers for engineering are
shown in Table 2.

Sources of Technical Debt in process involve insufficient evi-
dence of explicit goals and readiness to perform, insufficient

accountability based on work responsibility matrix, insuffi-
cient planning of design levels and staged increments, and
insufficient planning, management, and control of software
product releases.

The Technical Debt conditioning triggers for process are
shown in Table 3.	

The author can be contacted at oneilldon@aol.com.

Table 3. Technical Debt: Process, Trigger, Condition, Action

Source Trigger Condition Action
Process P1.

Software Project
Management

Where the software project management mode
is low

A Technical Debt conditioning
trigger is set.

P2.
Software Product
Engineering

Where the software product engineering mode
is ad hoc

A Technical Debt conditioning
trigger is set.

P3.
Iterative development

Where incremental or iterative development of
design levels and delivery stages is not used

A Technical Debt conditioning
trigger is set.

P4.
Best practices

Where the use of best practices is rated low A Technical Debt conditioning
trigger is set.

P5.
Metrics

Where metrics are not used A Technical Debt conditioning
trigger is set.

P6.
Quality Assurance

Where quality assurance is not in place and
functioning

A Technical Debt conditioning
trigger is set.

P7.
Defect rate

Where the actual defect rate including both
defect detection and defect correction exceed
the expected

A Technical Debt conditioning
trigger is set.

Total Multiple Technical Debt
conditioning triggers are set.

Table 2. Technical Debt: Engineering, Trigger, Condition, Action

Source Trigger Condition Action
Engineering E1.

Deep domain expertise
Where deep domain expertise is not widespread
on the project

A Technical Debt conditioning
trigger is set.

E2.
Software architecture

Where software architecture is not tightly
coupled with middleware, operating system, and
network services

A Technical Debt conditioning
trigger is set.

E3.
Requirements known

Where requirements are not fully known A Technical Debt conditioning
trigger is set.

E4.
Technical risk

Where the source of technical uncertainty in
function, form, or fit is high

A Technical Debt conditioning
trigger is set.

E5.
Product size

Where product size estimates at completion
exceed product size estimates planned

A Technical Debt conditioning
trigger is set.

E6.
Complexity

Where cyclomatic or essential complexity trend
upward from one product release to another

A Technical Debt conditioning
trigger is set.

Total Multiple Technical Debt
conditioning triggers are set.

