
 25 Defense AT&L: January–February 2014

Pohland is a computer engineer and a member of the U.S. Army Materiel Systems Analysis Agency (AMSAA) Reliability Branch with 5
years of reliability analysis, software development, and process improvement experience. Bernreuther is an operations research analyst
at AMSAA Reliability Branch at Aberdeen Proving Ground, Md., and has 30 years of software development, technical analysis and process
improvement experience.

Scorecard Reviews
for Improved Software Reliability

Timothy Pohland n David Bernreuther

Software reliability poses a significant challenge for the Army as software is increasingly
important in a broad range of applications. The safety, welfare and effectiveness of our
Soldiers directly depend on the ability of software to perform as intended and operate
reliably in adverse and austere conditions. The ability of the Defense Department (DoD) to
provide a high level of Soldier services while minimizing overhead and other sustainment

costs is tied directly to the reliability of large and complex software systems.

Software is a key enabler in compiling intelligence, conducting analysis, and performing command-and-control
functions. For example, the Army must support numerous command, control, communications, computers, intel-
ligence, surveillance and reconnaissance (C4ISR) systems at a cost in excess of $200 million annually. Furthermore,
embedded software has become an essential feature of virtually all hardware systems. This necessitates assess-
ing system reliability through a holistic accounting of hardware, software, operator and their interdependencies.

Defense AT&L: January–February 2014 26

Issues with the performance and reliability of software
throughout the DoD led to development of the Capability
Maturity Model (now Capability Maturity Model Integration
or CMMI) in the late 1980s. Similarly, industry standards such
as the IEEE/ISO 12207 also have emerged to address sound
software practices. Additionally, a plethora of tools and tech-
niques, from requirements management tools to dynamic code
analyzers, are available to support the engineering of reliable
software. Yet, as mature as software reliability practices and
standards have become, reliability remains a significant issue
for government and industry. A recent sample of combined
hardware-software systems tested by the Army illustrates the
significance of the issue. It found software failures pervasive
throughout the sampled systems, constituting 52 percent of
the overall failures (worst case: 82 percent).

Benefits of a Scorecard Approach
Software development often is complex and expensive, while
available resources and time are generally limited. This exa-
cerbates the challenges of ensuring appropriate and effective
practices are followed. To facilitate development of more reli-
able software, the Army Materiel Systems Analysis Agency
(AMSAA) has developed a software reliability scorecard. This
instrument extends and complements an existing scorecard
on general reliability practices. It also complements organi-
zation-centric approaches, such
as CMMI, by assessing the level
of risk associated with reliability-
specific practices within an indi-
vidual software project.

The scorecard is a structured and
transparent instrument for as-
sessing the health of an individ-
ual software development effort
and is invaluable in isolating weak
areas for further analysis and
work. It enables scarce resources

to be prioritized and, subsequently, more reliable software to
be developed. The research, discussion and reflection under-
taken while applying the instrument can be as valuable as the
resultant score(s). It provides a common structure for multiple
disciplines to see the interrelationship and importance of vari-
ous reliability issues and practices outside their own domain.

The scorecard focuses on areas that warrant additional re-
search and analysis. It highlights areas of weakness and,
through the evaluator’s recommendations, gives insight on
how to address those weaknesses. However, it is not pre-
scriptive as to specific actions that should be taken. AMSAA
recommends that the areas of concern, once discovered, be
investigated further to identify the best software and reliability
practices and tools to be applied at those areas.

How It Works
The software reliability scorecard adheres to conventions
similar to the existing General Reliability Scorecard, which is
used by numerous DoD organizations. It is self-contained in an
Excel spreadsheet with 57 specific elements to be evaluated
and rated. All the elements are grouped into seven catego-
ries, along with definitions for each rating level, and laid out
in a single input sheet. Each element is rated red, yellow or
green to represent high, medium or low risk, respectively. An
example of a rating definition of Low Risk for Developmental
Testing appears in Figure 1. Additionally, cells are provided
for the rater to enter a rationale and recommendations for
each element. These offer important insights for the feedback
process, helping turn the scorecard ratings into focused and
effective actions.

The scorecard processes the individual ratings and derives
a total score assessing how much the program is at risk. The
ratings are adjusted by weighting factors assigned to each in-
dividual element. The overall risk assessment is normalized
to a value between 1 and 100, where 1 is low risk and 100 is
high risk. A top-level quantitative assessment is illustrated in
Figure 2.

The scorecard also generates summaries of each of the seven
categories to help focus on strengths and weaknesses. These
pictorially represent the number of high-, medium- and low-
risk elements in each category, as shown in Figure 3.

Figure 1. Sample Element Description
(Low Risk)

Design for Reliability

Developmental Testing

•	 All modules of software are covered by unit testing
and all are included in integration testing.

•	 All external systems are included (or surrogated) in
integration testing.

•	 Multiple sets of test data are available to support
both unit testing and integration testing during de-
velopment. The test data adequately represents the
scale of operations that the software will encounter
when used operationally.

Low Risk Medium Risk High Risk

54

Overall Risk Assessment

Normalized Risk Score (1 to 100 scale where 100 is the highest risk) = 54

Assessed
Risk

Figure 2. Sample Overall Rating

 27 Defense AT&L: January–February 2014

Figure 3. Sample Category-Level
Summary

Design for Reliability
Number of Ratings by Risk Level

It is highly recommended that a multidisciplinary team apply
the scorecard to a project. Initially, each member should assess
the project from his or her perspective and knowledge. The
team then should compare and discuss its members’ ratings
of each element to achieve consensus. These deliberations
usually are as insightful and valuable as the rating scores. The
team should use the Rationale and Recommendation fields to
help record the key points of its deliberations and draft recom-
mended actions.

The instrument is designed to be of value at any stage of
software development. Although many of the elements lend
themselves to specific stages of the software life cycle, the
results are most insightful when all elements have been
assessed regardless of the project’s current status. If the
instrument is being applied later in a project’s life cycle, as-
sessment of the earlier activities provides valuable insight
about the character of the existing design and code. Con-
versely, activities that are usually a priority later in a project
(preparations for Fielding and Sustainment, for example) are
“leading indicators” of the quality and thoroughness of the
reliability tests being conducted. These later elements are
not weighted as highly as earlier activities but still reduce
risk. A project that proactively starts them early is reducing
the overall risk of the project.

There may be cases where an element simply does not apply
to a given project. For these circumstances, there is a “not
evaluated” option for reviewers; the scorecard will drop these
elements from its calculations and provide a normalized risk
score from the remaining elements. In the summary chart for
each category, a count of the “NE” elements is provided.

Categories and Elements
The software reliability scorecard addresses seven key cat-
egories of reliability practices most applicable to software
development: program management, requirements man-
agement, design capabilities, system design, design for re-
liability, (customer) test and acceptance, and fielding and
sustainment. Each category then covers a number of specific
elements focusing on key reliability practices. A detailed ex-
amination of every element within the scorecard is beyond
the scope of this article. However, a discussion of each of the
categories and some of their key features should provide an
understanding of the breadth and depth of the examination
of good reliability practices.

Program Management
Development of reliable software requires that limited re-
sources and time be well managed; that the customer and
team work collaboratively; and that reliability-enhancing ac-
tivities receive the necessary resources, visibility and priority.
The Program Management category addresses these needs
by looking at 12 elements:

•	 Developer’s Experience
•	 Process Maturity
•	 Program Planning
•	 Currency of Plans
•	 Progress Reviews
•	 Readiness
•	 Reliability Engineering
•	 Reliability Growth Management
•	 Verification and Validation (V&V)
•	 Supporting Disciplines
•	 Risk Management
•	 Commercial Off-the-Shelf (COTS) Management

CMMI, or similar organization maturity levels, is considered
part of the developer’s experience. As organizational maturity
does not guarantee success, this element also considers the
developer’s experience with applications of the domain, size
and complexity under consideration. Supporting Disciplines
include human factors, technical writing, and others—es-
sential to the software, but not necessarily involved with a
project’s core design and coding activities.

Requirements Management
Any successful development project relies on complete and
clearly understood requirements. These should include well-
considered and -defined reliability goal(s). A good system for
recording requirements and linking them to the design capa-
bilities that will provide them is also essential. The elements
in Requirements Management are:

•	 System Requirements
•	 Currency
•	 Reliability Goals
•	 Requirements Allocation
•	 Quality of Requirements

Normalized Risk Score (1 to 100 scale where 100 is the highest risk) = 40

Low, 2
NE, 0
Unrated, 0

Medium, 2

High, 1

Defense AT&L: January–February 2014 28

•	 Use Cases
•	 Interoperability
•	 Dependency
•	 Other Characteristics

Ideally, the requirements of a software project are defined
completely and well understood when design begins. They
remain static thereafter. Realistically, this rarely happens be-
cause requirements evolve while the project progresses. Ac-
cordingly, Requirements Management also assesses how well
the project realizes requirements have changed and adapts its
plans and activities. A mature developer will seek to discover
and accommodate the changes. This not only reduces risk
but minimizes costs and time, as resources are more wisely
allocated to accommodate the newest requirements.

Use Cases is a notable element, because these cases pro-
vide a powerful method to enhance understanding between
the customer and developer and among the various involved
disciplines. They also facilitate requirements definition, de-
velopment, testing and documentation such as users guides.
Their use greatly aids the development of reliable and effec-
tive software.

Design Capabilities
By assessing the developer’s Design Capabilities, the score-
card seeks to ensure that sufficient capabilities to design reli-
able software are in place and implemented effectively. The
seven elements of Design Capabilities are:

•	 Development Process
•	 Process Implementation

•	 Documentation and Repository
•	 Configuration Management
•	 Collaboration Capabilities
•	 Development Samples
•	 Analysis of Alternatives

The Development Samples element is particularly relevant to
the DoD, where the applications/systems to be supported are
often unique or highly specialized.

System Design
The software scorecard is intended to examine the enabling
practices and capabilities being applied to a software develop-
ment effort. It is not intended to make a detailed software en-
gineering assessment of the code and design itself. However,
the following key elements of the design can be assessed to
ensure that the design addresses reliability drivers:

•	 System Architecture
•	 Modular Design
•	 Data Architecture
•	 Interface Design
•	 Fault Tolerance
•	 Usability
•	 COTS Selection

The scorecard treats Usability as an element integral to the
software’s reliability. This is particularly true for DoD appli-
cations, where a misunderstanding by the user or a series of
small disruptions can endanger Soldiers in combat. Similarly,
Soldiers rely on software prepared to handle Faults (internal
and with other interfaced systems) with minimal disruption.
The physically dispersed and austere locations in which the
Army operates require that a well-designed Data Architecture
consider the physical location of data and users and the real-
istic levels of communication between them.

Design for Reliability (DFR)
The category of DFR elements endeavors to ensure that
practices crucial to the design of any reliable product are
integral to the development effort. These practices need
to be applied from the very start of development; program
risk should be assessed higher if they are not. The DFR
elements consist of:

•	 Failure Management
•	 Developmental Testing
•	 Reliability Monitoring
•	 System Reliability Analysis
•	 Independent Reviews

It is significant to note that Developmental Testing is called
out as a separate element. Solid DFR requires that most reli-
ability be “baked in” the software and design before customer
testing. This means that the developer must expose failure
modes as early as possible. Each mode cannot be resolved
immediately. However, a general characterization of the failure

Ideally, the requirements
of a software project are

defined completely and well
understood when design

begins. They remain static
thereafter. Realistically,

this rarely happens because
requirements evolve while

the project progresses.

 29 Defense AT&L: January–February 2014

mode enables the developer to plan when and how it should
be addressed. Mature developers will reduce risk and costs by
conducting developmental testing to expose, characterize and
prioritize failure modes as soon as possible. The subsequent
customer test then becomes, as appropriate, a refinement
stage to iron out a minimum of issues.

(Customer) Testing and Acceptance
It is preferable that a developer bring a highly reliable product
to customer testing—one that requires minimal corrections.
The reality is that many software systems are provided to
the customer with a low level of reliability. This has been
particularly true of many DoD applications that call for a level
of sophistication, fault tolerance and size that are hard to
simulate in a development environment. Generally, new DoD
systems experience new failure modes and a subsequent
decline in reliability when they are fielded. Correcting these
failures is extremely expensive and difficult. Accordingly, it
is vital that customer acceptance-testing expose and resolve
as many remaining failure modes and problems as possible.
Further, the developer must have the capabilities and tools
in place to handle the new issues as they arise. The numer-
ous elements of (Customer) Testing and Acceptance seek to
address these issues. The elements are:

•	 Test Coverage
•	 Companion Test Systems
•	 Test Depth
•	 Usability and Suitability
•	 Scalability
•	 Non-functional Characteristics
•	 Embedded Systems Testing
•	 Failure Analysis
•	 Software Code Analysis Tools

Fielding and Sustainment
The utility of a software reliability scorecard is less appar-
ent when a project has reached the Fielding or Sustainment
stage. However, the fielding and maintenance of existing
software requires significant resources. For large applica-
tions, the financial cost is substantial. The elements of this
category assess how well a project has prepared for these
stages of the life cycle. It is recommended that the prior ele-
ments of the scorecard also be assessed at this time. They
provide insight into the quality and character of the software
on hand. A mature developer will, for example, know what
issues (e.g., failure modes) remain unresolved. The elements
addressed regarding Fielding and Sustainment are:

•	 Software Maintenance
•	 Field Support
•	 Documentation for Sustainment
•	 Dependencies and Interoperability
•	 Sustainment Testing
•	 Training
•	 Distribution
•	 Continuity of Operations Plan (COOP)

In the earlier stages of software development, scorecard users
are encouraged to consider and assess the Fielding and Sus-
tainment elements. Though these activities may not be due
yet, a proactive developer will start working on them in parallel
with earlier activities. They can serve as “leading indicators”
of a low-risk project.

Summary and Conclusion
AMSAA developed the software scorecard to complement its
existing hardware reliability portfolio and facilitate an increas-
ing software reliability workload. Its primary use is to assess
the reliability practices of individual software projects and to
focus more detailed analysis and work on the areas of most
concern. It is a particularly useful approach when “triaging”
ongoing software projects to identify where to focus analysis
and support. AMSAA applies the scorecard methodology to
provide Army and other DoD programs an independent as-
sessment of the project’s level of risk. However, the instrument
can be applied by the customer or as a self-assessment tool
by the developer. Valuable ideas and feedback from industry
partners and other DoD organizations have been used to im-
prove this tool for more general use.

The software scorecard is available at no cost to any U.S. gov-
ernment agency and its contractors. Information to request a
copy is available at www.amsaa.army.mil/ReliabilityTechnol-
ogy/RelTools.html.

The authors can be contacted at timothy.g.pohland.civ@mail.mil and
david.g.bernreuther.civ@mail.mil.

The physically dispersed
and austere locations

in which the Army
operates require that
a well-designed Data

Architecture consider the
physical location of data

and users and the realistic
levels of communication

between them.

http://www.amsaa.army.mil/ReliabilityTechnology/RelTools.html
http://www.amsaa.army.mil/ReliabilityTechnology/RelTools.html
mailto:david.g.bernreuther.civ@mail.mil

