
 Image designed by Diane Fleischer

REQUIREMENTS
Engineering in an

A
Softw

GILE
are Development

ENVIRONMENT

W. Allen Huckabee

The Business Capability Lifecycle (BCL) methodology, which was implemented
to develop defense business systems, requires a change in requirements
engineering processes. Previous software development work by Systems,
Applications, and Products on the Global Combat Support System-Army
(GCSS-Army) followed the waterfall Software Development Life Cycle (SDLC),
which is not acceptable in the BCL methodology. The typical functional
requirement statement is not easily changed and introduces problems into
an Agile SDLC. In this article, the author posits that Agile-based require-

395Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

ments (user story and acceptance criteria) best fit the BCL approach. By
implementing best business practices and lessons learned from the GCSS-
Army project, a typical BCL-led program can achieve significant benefits,
such as (a) increased effectiveness in requirements meeting the users’ needs;
(b) increased performance of customers and software developers; and (c)
reduced requirements volatility.

Keywords: Agile, Business Capability Lifecycle (BCL), Investment Management (IM),
requirements engineering, Software Development Life Cycle (SDLC)

396 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

The Business Capability Lifecycle (BCL) is an “overarching framework”
implemented by the Department of Defense (DoD) to “rapidly deliver”
(Defense Acquisition University [DAU], 2013, p. 3) useful information tech-
nology (IT) capabilities to DoD users. The framework mandates the use of
iterative development processes to deliver IT capabilities in “18 months from
its Milestone B to Full Deployment Decision (FDD)” (p. 4). As the DoD moves
toward becoming more integrated using Enterprise Resource Planning
(ERP) systems, this article makes the case that the standard require-
ment statement and Work Breakdown Structure (WBS)-driven waterfall
Software Development Life Cycle (SDLC) are not advantageous to the com-
pressed cycle time required by the BCL methodology. In fact, lessons
learned from the Global Combat Support System-Army (GCSS-
Army), which replaced the existing suite of legacy Standard
Army Management Information Systems, suggest that the
standard Statement of Requirements-driven develop-
ment is not as efficient as other methodologies. This
article proposes that many benefits can be gained
by performing more elaborate requirements
engineering processes during the Investment
Management (IM) phase of the BCL, using
Agile-based user stories and acceptance cri-
teria for integrating the Army’s remaining
logistics and tactical finance capabilities into
GCSS-Army, while following the BCL meth-
odology (DAU, 2013).

This article reports on a case study of proj-
ect requirement-engineering processes and
documentation of an ERP software devel-
opment project, which seeks to identify the
potential benefits of using Agile-based require-
ments-engineering processes. The project under
analysis transitioned from the waterfall SDLC
to an Agile SDLC. A limitation of this study is that
access to quantitative data was restricted; there-
fore, such data could not be used in this study. A second
limitation is that this article only addresses functional
requirement statements, and therefore, quality and technical
requirements are not addressed.

397Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

This article is organized in the following manner. First, a review of litera-
ture discusses common requirements-engineering processes used in typical
software development projects. The final sections provide an overview of the
requirements engineering process used on the GCSS-Army project, along
with some lessons learned and benefits observed, followed by conclusions.

Literature Review
A review of business requirements-engineering literature highlights
three general requirements-engineering processes used in the software

development process: functional requirement statements (Institute
for Electrical and Electronics Engineers [IEEE], 1998, p. 37),

use cases (Regnell, Kimbler, & Wesslén, 1995), and Agile-
user stories (Layman, Williams, Damian, & Bures,

2006). Paetsch, Eberlein, and Maurer (2003) defined
requirements engineering as a process by which

valid requirements are “identified, analyzed, and
documented for the system being developed” (p.

1). These researchers suggested the main goal of
traditional requirements-engineering activi-
ties is to “know what to build before system
development starts” (p. 1). Generally speak-
ing, this helps in reducing the cost of rework
later in system development. Traditional
methods typically utilize functional require-
ment statements, Software Requirements

Specification (SRS) documentation, and use
cases as methods of describing “what is to

be done, but not how they are implemented”
(Paetsch et al., p. 1). Additionally, these require-

ments engineering activities work very well with
waterfall methods, but are not effective in iterative

SDLCs. However, Paetsch et al. suggested that Agile
requirements-engineering methods can be productive

in an iterative development environment where software
can be delivered faster, with “improved customer satisfaction

and frequently delivered working software” (p. 1) utilizing user
stories with less formal documentation processes.

398 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

Functional Requirements
Functional requirement statements “define the fundamental actions

that must take place” (IEEE, 1998, p. 16) in the software system. Additionally,
they provide detailed information on how a system should perform and how
it should interact with databases and other systems, but do not address user
interaction or business value. Detailed design constraints and compliance
standards the system must meet are also included in functional require-
ment statements. Figure 1 provides an example of a functional requirement
statement used on the GCSS-Army project. This example was taken from
the GCSS-Army requirements database.

FIGURE 1. EXAMPLE OF A FUNCTIONAL STATEMENT OF
REQUIREMENTS EXTRACTED FROM THE
GCSS-ARMY REQUIREMENTS DATABASE

The system shall allow a user to enter mission and/or usage data.

Source for requirement: ULLS-G—P3–29(1) FD, ULLS-G EM 7.2.3

The example in Figure 1 is a simple one; however, Cohn (2004a) suggests
that typical IEEE-style functional requirement statements are “time con-
suming to write and read, assume everything is known in advance” (p. 5),
and lack early user feedback. Functional requirement statements are typi-
cally listed as “shall statements,” where each requirement starts with “the
system shall…” (p. 16). A functional requirement typically includes elements
such as:

•	 Validity checks on the inputs;

•	 Exact sequence of operations;

•	 Responses to abnormal operations;

•	 Effect of parameters; and

•	 Relationship of outputs to inputs (IEEE, 1998, p. 16).

Functional requirement statements are rolled up into a single “software
requirements specification (SRS) document” (IEEE, 1998, p. 4). A typical
SRS describes all of the system’s technical and functional specifications
for products and systems. Paetsch et al. (2003) indicated that the SRS is
“unambiguous, complete, correct, understandable, consistent, concise, and

399Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

feasible” (p. 3). Software requirements specification documents are typi-
cally provided to a program management office as the “baseline” (Paetsch
et al., p. 3) as input into a “linear waterfall development activity” (Davies,
2001, p. 46) “before analysis starts” (Jacobson, Spence, & Bittner, 2011, p.
16). Jacobson et al. (2011) further suggested that requirements analysis
“starts before implementation,” and implementation is completed before
the “verification starts” (p. 16), leaving user feedback out of the process until
all development and testing has been completed, which is not conducive to
iterative SDLCs.

Use Case
An approach used in both traditional and interactive software develop-

ment projects to describe system requirements is the use case. Use cases
allow analysts to solicit and document requirements from the customer
with the goal of identifying and describing a number of “typical use cases
for every actor” (Regnell et al., 1995, p. 1) interacting with the system. The
use case is a component of the Unified Modeling Language, which supports
iterative software development processes, thereby allowing an analyst to
solicit user feedback early in the development cycle.

Additionally, a use case defines all of the ways of “using a system to achieve
a particular goal for a particular user” (Jacobson et al., 2011, p. 4) and
“describes the possible outcomes of an attempt” (International Institute of
Business Analysis, 2015, p. 398) to accomplish that goal. Additionally, a use
case makes it “clear what a system is going to do and, by omission, what it is
not going to do” (Jacobson et al., p. 4).

Wiegers and Beatty (2013) provided an example of using use cases in gath-
ering the requirements for a “Chemical Tracking System” (p. 161) in an
iterative environment. The researchers suggested that in an iterative envi-
ronment, waiting until the “requirements specification is complete” (p.
161) is too late to seek user feedback, and suggest that soliciting early and
consistent feedback from users is a key success factor in documenting
requirements in an iterative SDLC. This is a key difference in iterative
processes and traditional processes. For example, Paetsch et al. (2003)
conducted a study that compared traditional requirements-engineering
methods, use cases, and Agile software development approaches. These
researchers indicated that customer involvement was a primary difference
between the different methodologies, which can be beneficial to the success
of a software development project.

400 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

Additionally, use cases are written from the user’s perspective to “avoid
describing the internal workings of the system” (International Institute
of Business Analysis, 2015, p. 398) and are very detailed. According to the
institute, there is “no fixed, universal format” (p. 398) for creating a use case.
However, Wiegers and Beatty (2013) recommended the use of a template in
the form of a Microsoft Word document or spreadsheet with a formal orga-
nization. A use case has certain elements that are considered mandatory,
which are listed in Table 1.

TABLE 1. MANDATORY ELEMENTS OF A USE CASE

Element Description Prior Research
Name or ID The unique name of the

use case.
International Institute of
Business Analysis, 2015;
Wiegers & Beatty, 2013

Goal Brief description of a
successful outcome.

International Institute of
Business Analysis, 2015

Primary Actor or
Actor

A person or external
system that interacts with
the system.

International Institute of
Business Analysis, 2015;
Wiegers & Beatty, 2013

Preconditions Any fact that must be
true before the use case
can begin, which acts
as a constraint on its
execution.

International Institute of
Business Analysis, 2015

Post Conditions;
Guarantee

Any fact that must be true
for all possible primary
and alternative flows
when the use case is
complete.

Wiegers & Beatty, 2013

Trigger An event that initiates the
flow of events for a use
case.

International Institute of
Business Analysis, 2015;
Wiegers & Beatty, 2013

Exceptions Any exceptions/messages
that must be handled by
the system.

Wiegers & Beatty, 2013

Flow of Events The activities performed
by the actor and the
system during the use
case’s execution.

International Institute of
Business Analysis, 2015

Use cases have some advantages and limitations. For example, Regnell
et al. (1995) suggested use cases help deal with the “complexities of the
requirements analysis process” by allowing customers and developers to

401Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

“focus on one, narrow aspect of system usage at a time” (p. 1). Lee, Cha, and
Kwon (1998) added that use cases are easy to “describe and understand and
are scalable” (p. 1), allowing the customer to trace use cases throughout
the SDLC. Like Wiegers and Beatty (2013), Regnell et al. (1995) indicated
that one advantage of the use case is that it facilitates active collaboration
between the customer and developer, which enables the developer to learn
about “potential users, their actual needs, and their typical behavior” (p. 1).
However, they further indicated this approach can produce a “loose collec-
tion of use cases, which can lack ‘synthesis’” (p. 1), which is a weakness. Lee
et al. (1998) identified the “lack of rigor” and no “systematic approaches to
analyzing dependencies” among the many use cases developed for a system,
which impedes “detecting flaws” (p. 1), as limitations to this approach.

User Stories
Another well-known approach to requirements

engineering in iterative SDLC environments is the
Agile requirements-engineering methodology. In
an Agile SDLC, user requirements are captured and
recorded as user stories (Layman et al., 2006). A
user story removes the formality normally asso-
ciated with typical requirements engineering
activity. They still define what the system is to
perform, but from the user’s perspective, with
a focus on business value (Saddington, 2012).
User stories provide a context
within which a requirement is
to be developed around some
“feature, functiona lity, or
capability needed” (Coplien
& Bjørnvig, 2011, p. 167).
User stories provide a more
ef fective mea ns by which
the customer, in coordination
with the program office, can link
a user requirement to the system’s mis-
sion-critical functions required to meet
organizational goals (Huckabee, 2013).
Figure 2 provides an example user story,
which is a conversion of the functional
requirement statement in Figure 1
to an Agile user story.

402 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

FIGURE 2. EXAMPLE OF AN AGILE USER STORY

As a Dispatcher, I want to be able to add usage to equipment records when I close out an

operator’s dispatch so that I can track equipment usage for Total Cost of Ownership (TCO).

STORY 51.

ROLE ACTIVITY

BUSINESS VALUE

Note. This user story was created from the functional Statement of Requirements shown
in Figure 1.

Wiegers and Beatty (2013) suggested that user stories are concise state-
ments that “articulate user needs and serve as a starting point” (p. 144) for
customer and developer collaboration. Use cases are different from func-
tional requirement statements, which focus on a single system task. User
stories are an “interaction” (Nazzaro & Suscheck, 2010, p. 2) between the
user and the system, focusing on business value. User stories are written
or told from the “perspective of the person who needs the new capability”
(Wiegers & Beatty, 2013, p. 145). They are informal and written in plain
English on an index card. User stories typically describe a process or process
step, focusing on a user role (or another system), which performs the process
and achieves the business value. User stories can also be broken down into
“quantifiable units of development effort” (Breitman & Leite, 2002, p. 3),
which can increase the accuracy of estimating scope.

User stories identify critical success factors used to measure system per-
formance during development. However, to be effective, the format of user
stories must follow standards in their creation, use, and interpretation.
Table 2 describes user story components.

403Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

TABLE 2. ELEMENTS OF A USER STORY

Element Description Prior Research
Title Story title International Institute of

Business Analysis, 2015;
Rees, 2002

User story
number or ID

Unique identifier of the
requirement

Rees, 2002

Value statement Value achieved from the
capability

International Institute of
Business Analysis, 2015;
Nazzaro & Suscheck,
2010; Rees, 2002

Conversation or
activity

Action being performed
by the system; aids
in understanding the
features and/or values to
be delivered

International Institute of
Business Analysis, 2015;
Nazzaro & Suscheck,
2010; Rees, 2002

Related story
numbers

Relates the current story
to other stories

Rees, 2002

Acceptance
criteria

Defines the boundaries of
the capability; describes
system specifications

International Institute of
Business Analysis, 2015;
Koch, 2005; Leffingwell
& Widrig, 2003; Resnick,
Bjork, & de la Maza, 2011;
Sy, 2007

The most important feature of a user story is its use in promoting collabo-
ration between the customer and software development team about a need
or needed capability. Storytelling is a major part of the process where the
customer tells a story about a user’s need or capability with some acceptance
criteria. Cao and Ramesh (2008) conducted a qualitative study of 16 orga-
nizations using Agile requirements-engineering processes. They suggested
that using user stories in an Agile-based software program creates a more
satisfactory relationship between the customer and developer. As itera-
tions of storytelling and demonstrations continue, the requirements will
change until all acceptance criteria have been demonstrated and accepted
by the customer, tested, and promoted to the production system. Cao and
Ramesh also suggested that in an Agile environment, user stories produce
“clearer and more understandable” requirements because of the “immedi-
ate access to the customer” (p. 64). Leffingwell and Widrig (2003) agree and
suggest that when the software developer misunderstands or misinterprets
customer needs, trust is reduced, which can result in the “inability of the
program manager to resolve budget and schedule conflicts” (p. 782).

404 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

Acceptance criteria accompany each user story and are defined when
the user story is created. Acceptance criteria define when development is
complete (Resnick et al., 2011), and when a story is added to a sprint the
acceptance criteria can be adjusted. This is where the customer communi-
cates system specifications to the development team. Unlike user stories,
acceptance criteria have no defined content or format (Figure 2). However,
Nazzaro and Suscheck (2010) suggested that acceptance criteria can be a
“test case or a brief description of ‘done’” (para. 11). Also, acceptance criteria
must be clearly understood by all parties, as it helps in establishing a shared
understanding of success. A story’s acceptance criteria should include
usability requirements, specific performance metrics, and data validation
requirements. Including these components in acceptance criteria assists
the customer in defining measurable and testable criteria (Koch, 2005;
Leffingwell & Widrig, 2003; Sy, 2007).

Acceptance criteria that are too detailed can limit collaboration and result
in a misinterpretation of a requirement, whereas acceptance criteria with
little detail create a scenario where a requirement is missed. The right mix
of acceptance criteria will become clear with experience; however, best
business practices dictate that not all the details need to be included in the
acceptance criteria for a given story. For example, this article suggests that
more details about a need or capability can be provided as an attachment,
such as a mock-up, spreadsheet, and/or algorithm, and additional criteria
can be placed in integrated test cases for validation later in the development
cycle (Leffingwell & Widrig, 2003; Nazzaro & Suscheck, 2010; Resnick et
al., 2011).

A Comparison of Use Case
and User Stories

Requirements engineering literature reveals that use cases and Agile
user stories are both advantageous in iterative SDLCs; however, some dif-
ferences exist. Both use cases and user stories initiate a dialogue with the
customer about the desired capability and are both “sized to deliver busi-
ness value” (Cohn, 2004b, para. 14). Davies (2001) suggested the primary
differences between the two methodologies are in the way “their scope is
determined” (p. 46) and the artifacts produced during the requirements
gathering activities, as well as “consistency” (p. 48). Nazzaro and Suscheck
(2010) suggested the primary difference is that use cases communicate
system capabilities, while the user story focuses on “customer value” (para.

405Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

16). The use case is more formal and detailed, whereas user stories are less
formal. The deliverables or artifacts produced using the two approaches
vary (Figure 3). Wiegers and Beatty (2013) described these as a “core dis-
tinction” (p. 146), which aligns with Davies (2001) in that the artifacts
produced from the use case approach include a “use case model, a design
model, software development plan, software components, and a test plan
and test cases” (p. 48).

FIGURE 3. COMPARISON OF USE CASE APPROACH
AND USER STORY APPROACH

USE
CASE
NAME

USER
STORY

Conversations

Conversations

AnalysisUse Case
Specification

Refined User
Stories

Functional
Requirements

Acceptance
Tests

Tests

Note. Adapted from Wiegers and Beatty, 2013, p. 146. Copyright 2013 by Karl Wiegers and
Seilevel. Reprinted with permission.

Davies (2001) suggested that user stories are less formal and written on an
index card, and the artifacts produced using user stories are a “story card,
engineering tasks, source code with associated unit tests, and acceptance
tests and a software release” (p. 48). This aligns with Cohn (2004a) and
Wiegers and Beatty (2013) in that user stories are “smaller in scope” (para.
14) than use cases.

The use case methodology is more consistent than the user story meth-
odology because the goal behind use cases is to provide a complete set of
requirements documents, whereas “gaps can emerge” when using Agile
stories because the development activities in a sprint reflect only “those
requirements discussed with the customer” (Davies, 2001, p. 48); it is the

406 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

customer’s responsibility to ensure that any gaps in requirements are iden-
tified during the demonstration of the software at the end of each sprint.
However, Nazzaro and Suscheck (2010) would disagree; they suggest that
the higher level of collaboration between the customer and developer using
Agile stories produces a higher level of detail than use cases.

Finally, both methods define the boundaries on what is expected to be deliv-
ered and define when development is done, as well as help to establish process
objectives and thresholds, such as screen refresh rate, printing times, or
exporting formats. The detailed nature of use cases is good at “articulating
the functional behavior of a system” (p. 401). In contrast, user stories are
good in helping to “capture stakeholder needs” and prioritizing development
activities, and they serve as a good basis for estimation and project planning,
WBS development, requirements traceability, and for “project reporting”
(International Institute of Business Analysis, 2015, p. 402).

GCSS-Army Requirements-Engineering
Overview

Requirements engineering activities on the GCSS-Army program have
changed over the past 5 years. When the program began, requirements
engineering activities followed the waterfall SDLC, where a number of
requirements in a functional specification document (database version) were
handed over to the developer for planning, analysis, and development. These
requirements were in the form of functional requirement statements (Figure
1) that defined system operation. The program started with over 8,000
functional requirement statements; however, because of program rescoping
activities, the requirements were reduced to just over 4,500. These func-
tional requirement statements limited the program’s abilities to interpret the
requirements, because many lacked the important business rules required
to fully develop a specified capability. Moreover, the functional requirement
statements contained limited test criteria; experience from Army logistics
subject matter experts was relied upon to develop test criteria to validate
requirements, which constrains incremental development.

Often, these functional requirement statements failed to tie system activity
to business value or to the organizational goals that users expected, possibly
limiting the system's benefits once deployed. Also, functional requirement
statements do not allow for change, which is the norm in incremental SDLC
activities. In typical incremental activities, requirements are modified dur-
ing development based on the customer’s priorities during a sprint.

407Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

Most of the functional requirements found in the Combined Arms Support
Command’s GCSS-Army requirements database originated from antiquated
software end-user manuals of systems no longer in service. For example,
the functional requirement statement in Figure 1 was extracted from the
Unit Level Logistics System–Ground end-user manual. The replacement of
this system began in the mid-1990s with the Standard Army Maintenance
System–Enhanced (SAMS-E). Additionally, functional requirement state-
ments such as Figure 1 were never purged or updated. The antiquated
statements may still be valid; however, many of the statements are not con-
nected to regulatory guidance and are not process-oriented, which reduces
the effectiveness of Business Process Reengineering (BPR). This disconnect
adds complexity and error to the planning, analysis, and development pro-
cesses and can add risk in a compressed development timeline. This can
also result in the fulfillment of a requirements list, instead of focusing on
delivering capabilities that add business value, or that can be linked to
organizational goals (Saliu, 2005). Finally, to overcome these limitations,
the Program Manager (PM) GCSS-Army mandated a change in the acquisi-
tion strategy for production release 1.1 and beyond.

In 2009, PM GCSS-Army directed the systems integrator to depart from the
waterfall SDLC and adapt the Agile SDLC methodology. Background data
supporting the move to the new methodology indicated productivity issues,
requirements volatility, and the need for rapid prototyping to meet program
scope, schedule, and budget constraints. The Agile methodology is aimed
at increasing productivity, reducing requirement volatility, increasing cus-
tomer satisfaction, and improving software quality focusing on incremental
development (Maurer & Martel, 2002). During this change, analysis of func-
tional requirement statements ceased and user stories became the standard
for GCSS-Army requirements, introducing new challenges for the program.

The Agile methodology is aimed at increasing
productivity, reducing requirement volatility,
increasing customer satisfaction, and improving
software quality focusing on incremental
development (Maurer & Martel, 2002).

408 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

Even though the program provided Agile training to project members,
moving from functional requirement statements to Agile user stories was
a paradigm shift. With this shift, the program office had not established
standards for user story development. Without a standard, customers devel-
oped user stories with no specific format or criteria by which to validate
what was to be delivered. This created an atmosphere where the customer
and developer lacked a shared understanding of what defined success with
regard to a capability’s specification or how user stories were to be inter-
preted. This lack of understanding of story structure, content, and format
created increased requirement volatility in the Wave 1 product release,
which started with an approved requirements baseline of just 200 user sto-
ries. The volatility in Wave 1 generated over 300 change documents, either
modifying existing requirements, or adding requirements that were missed.

By applying best practices to what has been learned about the Agile meth-
odology over the past 5 years to current and future development efforts, a
standardized process for creating user stories and associated acceptance
criteria can be created. Standardized processes for creating user stories
will increase the customer’s ability to develop measurable and testable
user stories; increase the effectiveness of the systems integrator’s planning,
analysis, and development activities; reduce the negative impact on the pro-
gram’s scope, cost, and schedule; and deliver a quality product that meets
the customer’s expectations. These benefits align with findings by Cao and
Ramesh (2008) that Agile requirements engineering can “produce clearer
and more understandable requirements” (p. 64), with capabilities that are
more aligned with the customer needs and can be better prioritized as the
customer’s needs change.

Best business practices also dictate that a link to other stories be placed
in the acceptance criteria. Linking the current story and acceptance cri-
teria to other requirements helps the PM keep scope creep to a minimum.
Lessons learned from the GCSS-Army program indicate that the develop-
ment of one story can impact other stories; therefore, a link is required to
reduce the amount of rework or defects later in the SDLC. Additionally, this
link provides integration points to existing stories or stories that have not
been created. This link is necessary to ensure requirements are completely
integrated into the enterprise solution, and it helps in integration and
regression testing later in the development cycle. For example, in Figure 4
the Dispatcher role does not track the total cost of ownership, but the role
does contribute to the business objective, which adds value for the Army.

409Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

With the addition, in the acceptance criteria, of two sentences that link to
other stories (roll-up of usage data), a customer can prevent scope creep,
errors, and defects downstream in development.

FIGURE 4. EXAMPLE ACCEPTANCE CRITERIA TAKEN FROM GCSS-
ARMY REQUIREMENTS TRACEABILITY MATRIX

ACCEPTANCE CRITERIA

Demonstrate that GCSS-Army will 1) allow me to update usage on an end item when a
Dispatch is closed 2) allow me to update usage on components when a Dispatch is closed
3) allow me to view the total usage on an end item and/or components 4) demonstrate that
equipment usage is provided to LOGSA through the backwards compatibility interface
currently in production.

Link to other stories:
No roll-up of usage by equipment category or equipment serial number is needed now
(another story).
No roll-up of usage by component is needed now (another story). (POC Jane Smith).

Story Controls:
AR 750-1, DA Pam 738–751, and DA Pam 750-8

Note. AR = Army Regulation; DA = Department of the Army; LOGSA =Logistics Support
Activity; Pam = Pamphlet; POC = Point of Contact.

Lessons learned from previous development activities would indicate that
some form of controls be placed on Agile requirements and that such con-
trols become a best practice in the development of Agile requirements. Story
controls define the boundaries for an Agile requirement. These controls are
found in the Army Integrated Logistics Architecture (U. S. Army, 2008) as
inputs to operational activities. Story controls consist of Army Regulations,
a Department of the Army pamphlet, and field manuals. These controls con-
nect the Agile requirement to the logistics architecture, establish references
to the as-is processes, and aid in BPR. Additionally, story controls assist the
customer and developer in demonstrating where a software solution can fill
capability gaps and in identifying the policy implications brought on by BPR.
Controls facilitate the customer’s dialogue with the logistics and tactical
finance communities on required policy changes. Finally, story controls

410 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

benefit the program by providing a shared understanding of specific regu-
latory requirements, facilitate policy updates and requisite business rules,
and prevent scope creep.

Refining Agile Requirements
The BCL methodology provides a 12-month block of time between

Milestones A and B, when program planning occurs. This is when Agile
requirements can be refined and become part of the potential program scope
and approach documentation, which is part of the prototyping phase. At this
point, the sponsoring organization should coordinate with the program office
to provide a technical team to work with the functional sponsor in reviewing
and refining the requirements through product demonstrations and prototyp-
ing. These actions align with findings by Cao and Ramesh (2008) that a benefit
of prototyping allows the customer to “validate and refine requirements” to
obtain “quick customer feedback” (p. 65). This is an important step that must
not be overlooked. For example, performing this analysis enables the technical
team to determine how a product can fulfill requirements with out-of-the-box
capabilities, limiting the amount of customization required to fulfill the user’s
requirements, which is one of the goals of the BCL methodology. During the
refinement process, the technical team works with the functional sponsor to
review requirements; provide specific solutions and recommendations based
on requirement analysis, product demonstrations, prototyping, and simula-
tions; and document the solutions’ fit/gap. In this study, a fit/gap analysis is
the method of comparing as-is “enterprise processes and system functions
to adapt local processes to industry best practices” (Pol & Patukar, 2011, p.
2) contained in a software solution. A fit/gap can be performed by different
methods; among them are demonstrations, or what Pol and Paturkar defined
as “simulations” (p. 2). Once the fit/gap analysis is complete, user stories and
acceptance criteria are modified to address the solutions’ fit/gap with the
user’s requirements. This final step reduces program scope and schedule risk
by providing the systems integrator with a list of refined requirements for
estimation and development.

From a BCL process perspective, the fit/gap analysis should be initiated
once the preferred solution has been identified and serve as an input into
the Define Program Outcome context. This is because during the business
process reengineering activities, the functional sponsor has gained an
understanding of the processes to be implemented into the software solu-
tion. The outcome of this process should be a set of reengineered process

411Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

models with known requirements and potential gaps. Figure 5 describes
the proposed Agile requirements-engineering methodology as it relates to
the BCL process (DAU, 2013).

FIGURE 5. PROPOSED AGILE REQUIREMENTS-ENGINEERING
METHODOLOGY

Preferred Solution
Selected

Capability
Requirements

(Agile Stories and
Acceptance Criteria)

Program O�ce
Receives

Requirements

Functional
Analysts Perform
Fit/Gap Analysis

Demonstrations
are Viewed

Document Fit/Gap
and Adjust Stories

and Acceptance
Criteria

Program O�ce
Receives Updated

Requirements

BCL IM Phase
Define Program

Outcomes Context

Technical Analysts
Perform Fit/Gap

Analysis

Demonstrations
are Viewed

Vendor Assist
in Fit/Gap
Analysis

Prototypes are
DemonstratedVE

ND
OR

TE
CH

NI
CA

L
TE

AM
PR

OG
RA

M
OF

FIC
E

FU
NC

TIO
NA

L
SP

ON
SO

R

Once the requirements and gaps are identified, the technical team, func-
tional sponsor, and vendor work together to analyze the requirements to
demonstrate how the solution can fulfill the requirements and analyze
potential gaps to determine whether the solution can fulfill the gaps without
customization. The fit/gap results are annotated and the Agile require-
ments are updated to reflect the new information. The annotated results
and updated requirements are then handed off to the program office as input
into the Define Program Outcome context (DAU, 2013).

Managing Requirements during
Development

One of the most difficult tasks of an Agile project is tracking changes
to the Agile requirements baseline. This need for tracking is common
on Agile projects, as most requirements generated in the requirements
engineering process can be modified based on the customer’s priorities
while in a sprint. From a capabilities development perspective, lessons
learned on the GCSS-Army project show that requirements management
and traceability are difficult challenges. To address this challenge and
reduce requirement volatility, the PM GCSS-Army has created tools and

412 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

a methodology to manage requirement changes and traceability using an
online Requirements Traceability Matrix (RTM), as well as commercial
software packages used to track requirements as development objects move
through the development landscape. The process flow in Figure 6 describes
the methodology used to create the online RTM. Because of the iterative
nature of an Agile SDLC, the methodology is a critical component of an
Agile acquisition project as large as GCSS-Army, and more emphasis must
be placed on this process to ensure that user requirements implemented in
the solution meet the sponsoring organization’s needs.

FIGURE 6. REQUIREMENTS TRACEABILITY MATRIX METHODOLOGY

Change to a Requirement
is Identified in a Sprint

Change
Document is

Created

CCB
Approved
Change

Stop
NO

YES

Change Presented
to Government
Change Board

Contractor Updates

To-be Process
Models

Technical &
Functional

Specifications

R.I.C.E.F.W.a

Updated

Change
Document
Updated

Requirement
Updated

AILAb System
Functions are

Updated

Critical Path
Identified

RTM Updated

Test Cases
Updated in

Test Systems

SAP Solution
Manager
Updated

Updates are Stored in
SAP© Solution Managerc

Note. CCB = Change Control Board; a.R.I.C.E.F.W. = R-Report; I-Interface; C-Conversion;
E-Enhancement; F-Form; W-Workflow. Each of these objects is a development object.
b.AILA = Army Integrated Logistics Architecture; c.SAP Solution Manager = Systems,
Applications and Products Solution Manager.

Proposed Benefits
In addition to the benefits mentioned earlier, implementing the best

practices and lessons learned presented in this article will generate advan-
tages for a BCL program. Some of the benefits that can be realized from a
more elaborate requirements engineering process include: (a) increased
effectiveness in meeting user needs; (b) increased performance of customer
and software developers; (c) reduced requirements volatility; (d) a defined

413Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

functional and technical scope baseline to be included in the contract docu-
mentation at Milestone B; (e) less uncertainty in the estimation process; (f)
the potential for a standardized process that can be used DoD-wide; and (g)
increased customer satisfaction. Finally, these benefits provide the justifica-
tion for PMs to use the best business practices recommended in this article.

Conclusions
Change in the requirements engineering processes is required to ensure

the success of a BCL-based defense business system development activity.
This change is required in part because the BCL approach depends on an
accurate and prioritized list of Agile requirements and accurate program
scoping so as to facilitate a focus on fielding usable business capabilities as
quickly as possible (DAU, 2013, p. 12). Accurate Agile requirements engi-
neering provides the foundation for a successful BCL program because it is
more receptive to change. Using story controls establishes the boundaries
of the requirement, potential process objectives, and thresholds, and pro-
motes understanding and communication between the customer and
developers. Using a standardized and elaborate requirements-engineering
process following the Agile software development methodology to develop
and refine requirements can provide significant benefits. Finally, following
best business practices will help in reducing uncertainty and requirement
volatility, thus increasing the chances of success in the short cycle time
mandated by the BCL methodology.

Following best business practices will help in
reducing uncertainty and requirement volatility,
thus increasing the chances of success in the short
cycle time mandated by the BCL methodology.

414 Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

A Publication of the Defense Acquisition University 	 http://www.dau.mil

References
Breitman, K., & Leite, J. (2002). Managing user stories. Paper presented at the

International Workshop on Time-Constrained Requirements Engineering, Essen,
Germany, September 9.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical
study. IEEE Software, 25(1), 60–67.

Cohn, M. (2004a). Advantages of user stories for requirements. Retrieved from http://
www.mountaingoatsoftware.com/articles/advantages-of-user-stories-for-
requirements

Cohn, M. (2004b). User stories applied: For agile software development. Retrieved
from http://www.mountaingoatsoftware.com/uploads/presentations/User-
Stories-Applied-Agile-Software-Development-XP-Agile_Universe-2003.pdf

Coplien, J. O., & Bjørnvig, G. (2011). Lean architecture: For Agile software
development. West Sussex, UK: Wiley & Sons.

Davies, R. (2001). The power of stories. Retrieved from http://ciclamino.dibe.unige.it/
xp2001/conference/papers/Chapter11-Davies.pdf

Defense Acquisition University. (2013). Defense acquisition guidebook. Fort Belvoir,
VA: Author.

Huckabee, W. A. (2013). The relationship between effective strategy and enterprise
resource planning (ERP) systems business processes: A critical factor approach
(Unpublished doctoral dissertation). Minneapolis, MN: Capella University.

Institute of Electrical and Electronics Engineers. (1998). IEEE recommended practice
for software requirements specifications. New York, NY: Author.

International Institute of Business Analysis. (2015). BABOK v3: A guide to the business
analysis body of knowledge. Toronto, Ontario, Canada: Author.

Jacobson, I., Spence, I., & Bittner, K. (2011). Use Case 2.0: The guide to succeeding
with use cases. Retrieved from http://www.ivarjacobson.com/Use_Case2.0_
ebook

Koch, A. S. (2005). Agile software development: Evaluating the methods for your
organization. Norwood, MA: Artech House.

Layman, L., Williams, L., Damian, D., & Bures, H. (2006). Essential communication
practices for extreme programming in a global software development team.
Information and Software Technology, 48(9), 781–794. doi: http://dx.doi.
org/10.1016/j.infsof.2006.01.004

Lee, W. J., Cha, S. D., & Kwon, Y. R. (1998). Integration and analysis of use cases using
modular Petri nets in requirements engineering. IEEE Transactions on Software
Engineering, 24(12), 1115–1130.

Leffingwell, D., & Widrig, D. (2003). Managing software requirements: A use case
approach (2nd ed.). Boston, MA: Pearson.

Maurer, F., & Martel, S. (2002). Extreme programming. Rapid development for Web-
based applications. IEEE Internet Computing, 6(1), 86–90.

Nazzaro, W., & Suscheck, C. (2010). New to user stories? Retrieved from http://www.
scrumalliance.org/community/articles/2010/april/new-to-user-stories

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and agile
software development. Paper presented at the 2012 IEEE 21st International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
Toulouse, France, June 25–27.

415Defense ARJ, October 2015, Vol. 22 No. 4 : 394–415

October 2015

Pol, P., & Paturkar, M. (2011). Methods of fit and gap analysis in SAP projects.
Bangalore, India: Infosys.

Rees, M. J. (2002). A feasible user story for agile software development? Proceedings
of the Ninth Asia-Pacific Software Engineering Conference (pp. 22–30),
Queensland, AU, December 4–6.

Regnell, B., Kimbler, K., & Wesslén, A. (1995). Improving the use case driven approach
to requirements engineering. Proceedings of the Second IEEE International
Symposium on Requirements Engineering (pp. 40–47), York, UK, March 27–29.

Resnick, S., Bjork, A., & de la Maza, M. (2011). Professional scrum with team foundation
server 2010. Hoboken, NJ: Wrox.

Saddington, P. (2012). Agile pocket guide: A quick start to making your business agile
using Scrum. Somerset, NJ: Wiley.

Saliu, M. O. (2005). Understanding story-driven development processes. IEEE
Software, 22(6), 103–105.

Sy, D. (2007). Adapting usability investigations for agile user-centered design. Journal
of Usability Studies, 2(3), 112–132.

U.S. Army. (2008). U.S. Army posture statement: Army integrated logistics
architecture. Retrieved from http://www.army.mil/aps/08/information_papers/
transform/Army_Integrated_Logtistics_Architecture.html

Wiegers, K., & Beatty, J. (2013). Software requirements (3rd ed.). Redmond, WA:
Microsoft Press.

Biography

Dr. W. Allen Huckabee is a consultant with LMI
providing technical expertise to the test director of
Global Combat Support System-Army at Fort Lee,
Virginia. Dr. Huckabee provides support to ensure
the acquisition program is effective and suitable
for combat use. Before joining LMI, he served as a
capability developer for GCSS-Army. Dr. Huckabee
earned his MBA in Business Management from
Saint Leo University and his PhD in Organization
and Management with Specialization in Project
Management from Capella University.

(E-mail address: phdhuckabee@outlook.com)

