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INCREASE    
   RETURN 
on Investment of Software Development Life Cycle 

by Managing the Risk
—A Case Study



William F. Kramer, Mehmet Sahinoglu, and David Ang

This research article aims to identify and introduce cost-saving 
measures for increasing the return on investment during the Software 
Development Life Cycle (SDLC) through selected quantitative analyses 
employing both the Monte Carlo Simulation and Discrete Event Simu-
lation approaches. Through the use of modeling and simulation, the 
authors develop quantitative analysis for discovering financial cost 
and impact when meeting future demands of an organization’s SDLC 
management process associated with error rates. Though this sounds 
like an easy and open practice, it is uncommon for most competitors to 
provide empirical data outlining their error rates associated with each 
of the SDLC phases nor do they normally disclose the impact of such 
error rates on the overall development effort. The approach presented 
in this article is more plausible and scientific than the conventional 
wait-and-see, whatever-fate-may-bring approach with its accompanying 
unpleasant surprises, often resulting in wasted resources and time.

Keywords:  discrete event simulation (DES), Monte Carlo simulation (MCS), error or 
defect rate, return on investment (ROI), software development life cycle (SDLC)
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The science behind software development in metric terms of return 
on investment (ROI) is well known and taught by many. Much work has 
been accomplished in this area albeit lacking details of execution on a 
real-life problem (Ferreira, Collofello, Shunk, & Mackulak, 2009; Zhang, 
Kitchenham, & Pfahl, 2008; Zhang, Kitchenham, & Pfahl, 2010). The art 
of software development is a learned behavior and not one with which 
everyone becomes comfortable due to its intricacies and learning cycle. 
The same may be said with respect to software development life cycle 
(SDLC) management and distribution as depicted in Table 1, where the 
different phases of an SDLC process, when applied, provide specific 
inputs and expected outputs. 

TABLE 1. LIFE CYCLE PHASE FLOW

Requirement
Review

Design
Process

Developer
Timebox Development

Code
Certification

Security
Certification

Acceptance
Testing

Package
Acceptance

Baseline
Integration

Deployment
Decision

Requirement Analysis
Function Point Analysis

Testing Analysis

Blueprinting
Architecture
Acceptance

Software Development
Software Test

Deliver Software

Performance Testing
24/7 Automation Testing

Govt Acceptance

Code Integration
24/7 Automation Testing

Performance Testing

Deploy and Monitor

Impact Analysis

Desk Check
Automated Tools

Desk Check
Automated Tools

Contracts
Recycle

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Impact

Impact

Impact

Impact

Impact

Impact

Impact

Impact

Impact
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Life Cycle Phase (Process) Flow
As with many processes, there is a beginning point and a delivery 

epoch. SDLC methodology is no different. It enables standardization 
for planning and organizing, and facilitates cost estimation. Though 
there are several different models available, many are tweaked to best 
fit the current process or a sequence of activities in a software develop-
ment project. The life cycle used in this article (Table 1) has nine phases 
beginning with the requirement review and ending with the deploy-
ment decision. As one begins with the first phase (i.e., requirement 
review) and moves right, software developers will observe, at a mini-
mum, the activities that must be performed in the phase (keep in mind 
this is a high-level depiction). Moving right, there is a decision to be 
made whether to 
proceed to the next 
pha se or recycle 
back through the 
current phase for 
further refinement. 

This decision is 
only one of many 
f o r  t h e  p h a s e s ; 
however, it might 
be the most cru-
cial. Not only will 
schedule and cost 
be impacted, but 
phase errors will 
drive substantial 
cost a s wel l .  A n 
organization needs 
to understand the 
impact, and that is the intent of this article—namely to show the phase 
error impact to the SDLC, thereby reducing overall project manage-
ment cost by improving the error rate. 

Each phase will generate its own success criteria, allowing a develop-
ment team to anticipate the degree of success that can be expected 
throughout the life cycle. Unfortunately, as a development team moves 
through the SDLC process, it is common to shift expected outputs to 



A Publication of the Defense Acquisition University http://www.dau.mil

178 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

the right and ultimately into the next phase, if only to remain on track 
regarding the end schedule or an expected financial burn rate. Ultimately, 
reality will set in and a price to be paid will become readily apparent, 
whether it be in the form of a scheduling or financial disruption. 

This may be even more prevalent when it comes to 
the acquisition of custom software. To be bet-

ter prepared for the impact of the shifting 
deliverables associated with the SDLC man-
agement process, one must understand the 
intricacies of the process and especially the 

impacts associated with a product that 
is either late or overbudgeted. Using 
a discrete event simulation (DES) 

and Monte Carlo simulation (MCS), 
as combined, may assist in quantifying a 

scenario impact. The primary raison d’etre 
of this article is to demonstrate the poten-

tial for modeling the SDLC management 
process and bring the cost-saving factor 
forward to improve the ROI by employ-
ing statistical simulation techniques. 

Therefore, the basis of this article is to bring 
attention to the use of modeling and simulation 
(M&S) in developing a quantitative analysis 

for discovering potential scheduling and financial 
ROIs within the parameters of meeting future demands 

of an organization’s SDLC management process. 
More specifically, the potential impact is asso-
ciated with errors accruing and accumulating 
throughout the process. That being said, one 

must be mindful that the methods used to com-
pile this research article rely equally upon the art of 

simulation as well as the ever-enduring statistical and 
mathematical sciences behind the art of simulation. The 

statistical and mathematical computations used a significant amount of 
data gleaned from many years of software development experience. It is, 
however, through these years of experience with software development 
projects that we have come to appreciate an SDLC management process. 
Likewise, it is also during this process that we have learned to exercise 
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a degree of caution when evaluating those bidding to perform custom 
software development, who typically bid on the process with some degree 
of naiveté that views every requirement, algorithm, and interface as a 
nonissue and the work as always straightforward. Most of the time, this 
is not true, since hiccups invariably surface along the way, whether in 
the form of undefined requirements or bad test data. More often than 
not, unforeseen events occur, which ultimately impact both schedule 
and cost to the users’ disadvantage. 

Modeling and Simulation 
Methodology for a Case Study

To identify and incorporate software life-cycle phases along with 
function point analysis, software managers ought to associate the error 
rate per phase with the time distribution per phase. Organizations per-
forming standard unit, integration, and functional testing will likely 
only remove approximately 70% of defects during the life-cycle phases 
(Jones, 2008). This practice will allow other defects to run through 
the life cycle until the bottleneck becomes apparent in the final test-
ing phase. The model introduction takes this into account and assists 
with providing a rough order of magnitude (ROM) to the level of effort 
a program may encounter. In addition, the model also provides an alter-
native approach to facilitate ROMs with the appropriate schedule and 
additional resources. 

Computer M&S, as programs or networks of computers mimicking the 
execution of an abstract model of many natural systems from physi-
cal and life sciences to social and managerial sciences, and primarily 
engineering, have become an integral part of digital experimentation. 
M&S proves useful to estimate the performance of complex engineering 
systems when too prohibitive for analytical solutions. A simulation is 
defined as the reproduction of an event with the use of scientific models. 
A model is a physical, mathematical, or other logical representation of 
a system, process, or phenomenon. Time-independent static MCS and, 
conversely, dynamic DES (to manage events in real time for engineer-
ing applications) have been extensively reviewed (Sahinoglu, 2013). 
Taxonomy-wise, simulated computer models may be stochastic or deter-
ministic, and dynamic or static, and discrete or continuous. Computer 
simulation has been widely used in engineering systems to validate the 
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effectiveness of tentative decisions regarding a new plan or schedule, or 
its outcomes, without experiencing the actual conditions, which could 
cost more resources or partial to full destruction such as in the simula-
tion of the nuclear bomb (Sahinoglu, 2007). In a book titled Simulation 
Engineering by Jim Ledin (2001), the author outlines his twofold purpose 
as follows: 

i) Simulation is an approach that can significantly accelerate 
the product development cycle and provide higher quality in the 
final system.

ii) A simulation contains a set of mathematical models of one 
or more dynamic systems and the interactions between those 
systems and their environment. (p. 1)

Moreover, the Institute for Electrical and Electronics Engineers' 
Spectrum (June 2012) emphasized that the M&S effect is a creative 
and time-saving topic of interest relevant to automotive engineering of 
hybrid vehicles, finding solutions to treating nuclear waste, upgrading the 
nuts and bolts of the electrical power (Smart) grid, and supercomputing 
research, among other areas (Aoyama, 2012). 

Simulation Approach
Table 2 depicts the conduct of an error rate analysis within the 

parameters of the SDLC management process. To better depict the prob-
ability distribution, Table 2 associates the probability distributions with 
each phase of the life cycle. Keeping in mind a waterfall model is in play, 
future research may requre further phase delineation among the many 
attributes of the phases. Note that:

•	  There is a need to simulate and model error rates within the 
SDLC process. Schedules and costs are impacted.

•	  Many models, such as waterfall, Agile, SCRUM, RAD, time-
box, and spiral development methodologies exist today and 
could be used (Zhang, et al., 2010).

•	  This simulation model (Table 2) focuses on the error rates 
associated with waterfall methodologies.
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•	  In order to determine cost per cycle and average cost per 
phase when using a development rate consisting of function 
point per staff month, calculate the error rates per phase 
and then aggregate with the suggested cost model. 

TABLE 2. SOFTWARE DEVELOPMENT LIFE CYCLE DISTRIBUTION

Requirement
Review

Design

Developer
Timebox Dev

Code
Certification

Acceptance
Testing

Package
Acceptance

Baseline
Integration

Deployment
Decision

Security
Certification

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

CompletionN
Y

CompletionN
Y

CompletionN
Y

CompletionN
Y

Completion N
Y

Impact

Impact Analysis

Lognormal (2.62, 7.1)

Lognormal (17.13, 73.35)

Weibull (28.39, 0.81)

Erlang (1.36, 3) Erlang (1.36, 3)

Erlang (1.36, 3)

Erlang (1.36, 3)

Erlang (1.36, 3)

Exponential (40.9)

Algorithmic Step-by-Step Approach Using Statistical 
Random Number Generation

Table 3 depicts iterations 1–1,000 and provides the details/samplings 
used in the simulation correlating the phases with probability distri-
butions, the defect rates, repair rates, lambda, mu, standard deviation 
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(STD), and mean (Malone & Mizell, 2009). The average of the sampling 
was used along with a 180-day SDLC to determine defect rates per phase. 
These were used in the Java application to simulate and provide input to 
the findings in Table 4. Note the following:
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•	  Function point count is maintained at one function point for 
the life-cycle period of 180 days. With the distribution per 
phase identified along with the days per phase, the Average 
Defects per Phase (ADP) is introduced with the summation 
of the ADP to be the average defect per one function point.

•	  Next, the Average Defects per Day (ADD) is calculated 
by dividing the ADP by the Days per Phase. This output 
becomes our lambda (λ) in the phase calculation in deter-
mining our Probability of Waiting (PoW).

•	  The Average Repairs per Day (ARD) is determined by mul-
tiplying the ADD by our utilization factor of a constant 0.8 
(80 percent) from best practices (Malone & Mizell, 2009). 
This output becomes our mu (µ), also used in determining 
the PoW.

Results
Factors used to obtain results (Table 3) follow:

•	  Average Defects per Phase = (summation of each phase 
distribution)/iterations

•	  Days per Phase = variable set by experience

•	  Average Defects per Day = (Average Defects per Phase)/
(Days per Phase)

•	  Average Repairs per Day = (Average Defects per Day)/utili-
zation factor.

To make use of the facts in Table 3, a Java application (see Appendix, 
Java Source Code First Page) was developed to conduct several thousand 
runs for the simulation and ultimately provide a statistical summary to 
support Excel findings. The facts from the spreadsheet shown in Table 
4 were placed into this homebrewed java application where the user can 
identify the inputs, the number of runs, and lastly, can run with either a 
single-team or a two-team simulation.

Table 4 represents only one screen shot with a single distribution, while 
arbitrarily using cost per hour of $55, team size of 10, and work hours per 
day to equal 8. One can vary the cost factors. Taking these factors into 
account, the cost formula in Equation (1) is as follows: 
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Total	Cost	=	(Days	to	repair	•	work	hours	per	day	•	team	
size	•	hourly	rate).	(1)

We can begin to readily determine that the errors per phase quickly 
outpace the efforts of a single developer and throw the schedule and cost 
model far to the right. However, by adding a second development team to 
assist with the fixing of the errors per phase, the cost and schedule are 
only slightly impacted (Malone & Mizell, 2009). 

One can better appreciate the long-term impacts when dealing with 
contracts and why the lower bid may initially seem the best value; how-
ever, with the software development life cycle, this may not be the case. 
Improper preliminary analysis and use of resources could easily whirl 
the schedule and cost into an embarrassing tailspin. The core of this 
research precludes this handicap. 

Other findings and Excel spreadsheet results highlighted in Table 4 
follow.

•	 PoW is multiplied with the Days per Phase to obtain the 
Days to Repair for each specific team. 

•	  Multiple variables are added to obtain realistic cost of soft-
ware development teams (such as hourly rate of developers, 
team size, and hours per workday).

•	  The formula used for each team is: Total Cost = (repair days 
•	work	hours	•	team	size	•	hourly	cost).

Validation
Does the lowest dollar contract actually deliver the best value? This 

is what the research confirms positively.

Verification
Validation of error rates and function point rates came from Jones 

(2008). 

Outcomes
Development teams can determine cost at granular phases within 

the SDLC as it pertains to error rates within software development. 
Upon running the simulation, the aggregated results show significant 
financial benefits. Factors used to obtain results are shown in Table 3 
(Malone & Mizell, 2009).
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Conclusions
The article responds to the following question: When required to 

analyze best-value contracts without using a simulation model, does 
the requestor actually obtain true cost by analyzing a single entity 
to develop software versus aggregated cost (Table 4) delivered from 
an additional pool of resources? Future work along with inputs from 
software development cost models will go a long way in producing a 

better understanding  of the true cost of software development and why 
there seems to be a schedule shift as the SDLC runs through its phases. 
This project scratches the surface by showing that the assumption by 
most software developers that all contracts and estimates provided are  
realistic, does not really portray the impact of errors to the schedules, 
which further increases cost. Some conclusive findings of interest are 
outlined below:

•	  Average cost per phase with single team to fix errors is an 
estimated $628,421.20 with the original summation of 180 
days per phase. 

•	  Adding an additional team to focus on errors, thereby 
increasing the cost for labor for two teams, equates to 
42.14% savings. This is readily discerned in the reduced 
number of days to fix the errors. In fact, the second team 
will cost an estimated $363,633.60 in labor. The overall 
estimated savings is $264,787.60 for the cost of the repairs. 

•	  Future and long-term analysis should focus on specific 
methodologies as well as on the coding language. 

If the errors are identified in the early stages of a 
software development acquisition, contracting 
officers may be in a better position to avoid the 
lowest contract bid if they understand where 
proper resources, when applied, may actually 
decrease cost and schedule, thus delivering a 
successful acquisition and software functionality.
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•	  Many organizations have invested in the use of the waterfall 
methodology and have been slow to appreciate the potential 
cost and schedule impact from error rates within the mul-
tiple phases of the SDLC.

•	  This article aimed to present a DES and MCS to determine 
an outcome that can be used to improve a process and cut 
costs. The error rate analysis project has done just that. 

•	  Through lengthy discussions about rates within the MCS 
portion and the impact on business development systems, 
additional research and refinement may be sought to fur-
ther develop the phase rates from within an organization. 
Additional research will provide better understanding of 
the impact for long-term software development and error 
rate impact.

•	  It is hoped that this and later work will enable future profes-
sionals in software development acquisition to establish a 
more definite cost analysis when confronting quantifiable 
data such as function points and development languages to 
give them a better understanding of the impact of develop-
ment errors within the different phases of the waterfall 
SDLC. 

An SDLC is a methodological process that from a high level can be used 
to determine schedules and costs and identify bottlenecks. However, it 
seems only recently that declining information technology budgets and 
increasing delivery costs require us to slice the life cycle into further 
granularity to understand better the cost and schedule impacts. In an 
attempt to correlate errors with phases and cost to fix, a prevailing 
assumption is that the cost of errors is flat. However, this may not be so. 
If the errors are identified in the early stages of a software development 
acquisition, contracting officers may be in a better position to avoid the 
lowest contract bid if they understand where proper resources, when 
applied, may actually decrease cost and schedule, thus delivering a suc-
cessful acquisition and software functionality.
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Appendix
JAVA SOURCE CODE FIRST PAGE

//package negexp;
// W. Kramer

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Random;
import java.text.*;

public class NegExp extends JFrame {

//elements of user interface
    private JLabel trialsJLabel;
    private JLabel meanJLabel;
    private JLabel devJLabel;
    private JLabel MuJLabel;
    private JLabel BetaServiceJLabel;
    private JLabel errorRateJLabel;
    private JLabel LambdaJLabel;
    private JLabel BetaJLabel;
    private JLabel servTimeJLabel; //package negexp;
// W. Kramer

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Random;
import java.text.*;

public class NegExp extends JFrame {
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