
 Image designed by Diane Fleischer

INCREASE
 RETURN
on Investment of Software Development Life Cycle

by Managing the Risk
—A Case Study

William F. Kramer, Mehmet Sahinoglu, and David Ang

This research article aims to identify and introduce cost-saving
measures for increasing the return on investment during the Software
Development Life Cycle (SDLC) through selected quantitative analyses
employing both the Monte Carlo Simulation and Discrete Event Simu-
lation approaches. Through the use of modeling and simulation, the
authors develop quantitative analysis for discovering financial cost
and impact when meeting future demands of an organization’s SDLC
management process associated with error rates. Though this sounds
like an easy and open practice, it is uncommon for most competitors to
provide empirical data outlining their error rates associated with each
of the SDLC phases nor do they normally disclose the impact of such
error rates on the overall development effort. The approach presented
in this article is more plausible and scientific than the conventional
wait-and-see, whatever-fate-may-bring approach with its accompanying
unpleasant surprises, often resulting in wasted resources and time.

Keywords: discrete event simulation (DES), Monte Carlo simulation (MCS), error or
defect rate, return on investment (ROI), software development life cycle (SDLC)

DEFE
N

SE
 A

C
Q

U
IS

IT
IO

N UNIVERSITY ALU
M

N
I A

SSO
C

IATIO

N

R
E

SE
AR

CH PAPER COMPETIT
IO

N

2015 ACS

A Publication of the Defense Acquisition University http://www.dau.mil

176 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

The science behind software development in metric terms of return
on investment (ROI) is well known and taught by many. Much work has
been accomplished in this area albeit lacking details of execution on a
real-life problem (Ferreira, Collofello, Shunk, & Mackulak, 2009; Zhang,
Kitchenham, & Pfahl, 2008; Zhang, Kitchenham, & Pfahl, 2010). The art
of software development is a learned behavior and not one with which
everyone becomes comfortable due to its intricacies and learning cycle.
The same may be said with respect to software development life cycle
(SDLC) management and distribution as depicted in Table 1, where the
different phases of an SDLC process, when applied, provide specific
inputs and expected outputs.

TABLE 1. LIFE CYCLE PHASE FLOW

Requirement
Review

Design
Process

Developer
Timebox Development

Code
Certification

Security
Certification

Acceptance
Testing

Package
Acceptance

Baseline
Integration

Deployment
Decision

Requirement Analysis
Function Point Analysis

Testing Analysis

Blueprinting
Architecture
Acceptance

Software Development
Software Test

Deliver Software

Performance Testing
24/7 Automation Testing

Govt Acceptance

Code Integration
24/7 Automation Testing

Performance Testing

Deploy and Monitor

Impact Analysis

Desk Check
Automated Tools

Desk Check
Automated Tools

Contracts
Recycle

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

Impact

Impact

Impact

Impact

Impact

Impact

Impact

Impact

Impact

April 2015

177Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

Life Cycle Phase (Process) Flow
As with many processes, there is a beginning point and a delivery

epoch. SDLC methodology is no different. It enables standardization
for planning and organizing, and facilitates cost estimation. Though
there are several different models available, many are tweaked to best
fit the current process or a sequence of activities in a software develop-
ment project. The life cycle used in this article (Table 1) has nine phases
beginning with the requirement review and ending with the deploy-
ment decision. As one begins with the first phase (i.e., requirement
review) and moves right, software developers will observe, at a mini-
mum, the activities that must be performed in the phase (keep in mind
this is a high-level depiction). Moving right, there is a decision to be
made whether to
proceed to the next
pha se or recycle
back through the
current phase for
further refinement.

This decision is
only one of many
f o r t h e p h a s e s ;
however, it might
be the most cru-
cial. Not only will
schedule and cost
be impacted, but
phase errors will
drive substantial
cost a s wel l . A n
organization needs
to understand the
impact, and that is the intent of this article—namely to show the phase
error impact to the SDLC, thereby reducing overall project manage-
ment cost by improving the error rate.

Each phase will generate its own success criteria, allowing a develop-
ment team to anticipate the degree of success that can be expected
throughout the life cycle. Unfortunately, as a development team moves
through the SDLC process, it is common to shift expected outputs to

A Publication of the Defense Acquisition University http://www.dau.mil

178 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

the right and ultimately into the next phase, if only to remain on track
regarding the end schedule or an expected financial burn rate. Ultimately,
reality will set in and a price to be paid will become readily apparent,
whether it be in the form of a scheduling or financial disruption.

This may be even more prevalent when it comes to
the acquisition of custom software. To be bet-

ter prepared for the impact of the shifting
deliverables associated with the SDLC man-
agement process, one must understand the
intricacies of the process and especially the

impacts associated with a product that
is either late or overbudgeted. Using
a discrete event simulation (DES)

and Monte Carlo simulation (MCS),
as combined, may assist in quantifying a

scenario impact. The primary raison d’etre
of this article is to demonstrate the poten-

tial for modeling the SDLC management
process and bring the cost-saving factor
forward to improve the ROI by employ-
ing statistical simulation techniques.

Therefore, the basis of this article is to bring
attention to the use of modeling and simulation
(M&S) in developing a quantitative analysis

for discovering potential scheduling and financial
ROIs within the parameters of meeting future demands

of an organization’s SDLC management process.
More specifically, the potential impact is asso-
ciated with errors accruing and accumulating
throughout the process. That being said, one

must be mindful that the methods used to com-
pile this research article rely equally upon the art of

simulation as well as the ever-enduring statistical and
mathematical sciences behind the art of simulation. The

statistical and mathematical computations used a significant amount of
data gleaned from many years of software development experience. It is,
however, through these years of experience with software development
projects that we have come to appreciate an SDLC management process.
Likewise, it is also during this process that we have learned to exercise

April 2015

179Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

a degree of caution when evaluating those bidding to perform custom
software development, who typically bid on the process with some degree
of naiveté that views every requirement, algorithm, and interface as a
nonissue and the work as always straightforward. Most of the time, this
is not true, since hiccups invariably surface along the way, whether in
the form of undefined requirements or bad test data. More often than
not, unforeseen events occur, which ultimately impact both schedule
and cost to the users’ disadvantage.

Modeling and Simulation
Methodology for a Case Study

To identify and incorporate software life-cycle phases along with
function point analysis, software managers ought to associate the error
rate per phase with the time distribution per phase. Organizations per-
forming standard unit, integration, and functional testing will likely
only remove approximately 70% of defects during the life-cycle phases
(Jones, 2008). This practice will allow other defects to run through
the life cycle until the bottleneck becomes apparent in the final test-
ing phase. The model introduction takes this into account and assists
with providing a rough order of magnitude (ROM) to the level of effort
a program may encounter. In addition, the model also provides an alter-
native approach to facilitate ROMs with the appropriate schedule and
additional resources.

Computer M&S, as programs or networks of computers mimicking the
execution of an abstract model of many natural systems from physi-
cal and life sciences to social and managerial sciences, and primarily
engineering, have become an integral part of digital experimentation.
M&S proves useful to estimate the performance of complex engineering
systems when too prohibitive for analytical solutions. A simulation is
defined as the reproduction of an event with the use of scientific models.
A model is a physical, mathematical, or other logical representation of
a system, process, or phenomenon. Time-independent static MCS and,
conversely, dynamic DES (to manage events in real time for engineer-
ing applications) have been extensively reviewed (Sahinoglu, 2013).
Taxonomy-wise, simulated computer models may be stochastic or deter-
ministic, and dynamic or static, and discrete or continuous. Computer
simulation has been widely used in engineering systems to validate the

A Publication of the Defense Acquisition University http://www.dau.mil

180 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

effectiveness of tentative decisions regarding a new plan or schedule, or
its outcomes, without experiencing the actual conditions, which could
cost more resources or partial to full destruction such as in the simula-
tion of the nuclear bomb (Sahinoglu, 2007). In a book titled Simulation
Engineering by Jim Ledin (2001), the author outlines his twofold purpose
as follows:

i) Simulation is an approach that can significantly accelerate
the product development cycle and provide higher quality in the
final system.

ii) A simulation contains a set of mathematical models of one
or more dynamic systems and the interactions between those
systems and their environment. (p. 1)

Moreover, the Institute for Electrical and Electronics Engineers'
Spectrum (June 2012) emphasized that the M&S effect is a creative
and time-saving topic of interest relevant to automotive engineering of
hybrid vehicles, finding solutions to treating nuclear waste, upgrading the
nuts and bolts of the electrical power (Smart) grid, and supercomputing
research, among other areas (Aoyama, 2012).

Simulation Approach
Table 2 depicts the conduct of an error rate analysis within the

parameters of the SDLC management process. To better depict the prob-
ability distribution, Table 2 associates the probability distributions with
each phase of the life cycle. Keeping in mind a waterfall model is in play,
future research may requre further phase delineation among the many
attributes of the phases. Note that:

•	 There is a need to simulate and model error rates within the
SDLC process. Schedules and costs are impacted.

•	 Many models, such as waterfall, Agile, SCRUM, RAD, time-
box, and spiral development methodologies exist today and
could be used (Zhang, et al., 2010).

•	 This simulation model (Table 2) focuses on the error rates
associated with waterfall methodologies.

April 2015

181Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

•	 In order to determine cost per cycle and average cost per
phase when using a development rate consisting of function
point per staff month, calculate the error rates per phase
and then aggregate with the suggested cost model.

TABLE 2. SOFTWARE DEVELOPMENT LIFE CYCLE DISTRIBUTION

Requirement
Review

Design

Developer
Timebox Dev

Code
Certification

Acceptance
Testing

Package
Acceptance

Baseline
Integration

Deployment
Decision

Security
Certification

Completion N
Y

Completion N
Y

Completion N
Y

Completion N
Y

CompletionN
Y

CompletionN
Y

CompletionN
Y

CompletionN
Y

Completion N
Y

Impact

Impact Analysis

Lognormal (2.62, 7.1)

Lognormal (17.13, 73.35)

Weibull (28.39, 0.81)

Erlang (1.36, 3) Erlang (1.36, 3)

Erlang (1.36, 3)

Erlang (1.36, 3)

Erlang (1.36, 3)

Exponential (40.9)

Algorithmic Step-by-Step Approach Using Statistical
Random Number Generation

Table 3 depicts iterations 1–1,000 and provides the details/samplings
used in the simulation correlating the phases with probability distri-
butions, the defect rates, repair rates, lambda, mu, standard deviation

A Publication of the Defense Acquisition University http://www.dau.mil

182 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

TA
B

LE
 3

. F
A

C
T

S
Pe

r
Fu

nc
ti

on
 P

oi
nt

: 1
U

ti
liz

at
io

n
Fa

ct
or

: 0
.8

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

Ph
as

e
4

Ph
as

e
5

Ph
as

e
6

Ph
as

e
7

Ph
as

e
8

Ph
as

e
9

R
eq

ui
re

m
en

t
R

ev
ie

w
D

es
ig

n
C

o
d

e
D

ev
el

op
m

en
t

C
o

d
e

C
er

ti
fi

ca
ti

o
n

S
ec

ur
it

y
C

er
ti

fi
ca

ti
o

n
A

cc
ep

ta
nc

e
Te

st
in

g
P

ac
ka

g
e

A
cc

ep
ta

nc
e

B
as

el
in

e
In

te
g

ra
ti

o
n

D
ep

lo
ym

en
t

D
ec

is
io

n

Lo
g

no
rm

al
Lo

g
no

rm
al

W
ei

b
ul

l
E

rl
an

g
E

rl
an

g
E

xp
o

ne
nt

ia
l

E
rl

an
g

E
rl

an
g

E
rl

an
g

2.
6

2,
 7

.1
17

.13
, 7

3.
35

28
.3

9
, 0

.8
1

1.3
6

, 3
1.3

6
, 3

4
0

.9
1.3

6
, 3

1.3
6

, 3
1.3

6
, 3

It
er

at
io

n 1
0

.3
14

9
0

.4
0

4
6

0
.6

24
8

0
.0

0
24

0
.0

79
2

1
0

.0
0

27
0

.0
79

2
0

.0
6

97

2
0

.3
4

17
0

.4
0

51
0

.0
0

9
1

0
.15

25
0

.0
57

1
0

.13
33

0
.0

11
9

0
.0

71
2

3
0

.3
54

0
.4

0
76

0
0

.12
11

0
.14

0
6

1
0

.0
77

5
0

.0
26

6
0

.0
9

59

4
0

.3
10

6
0

.3
9

9
4

0
0

.15
1

0
.0

56
7

1
0

.0
38

2
0

.0
8

1
0

.0
6

53

5
0

.3
4

0
4

0
.4

0
35

0
0

.0
73

7
0

.10
1

0
.0

9
9

9
8

0
.0

34
7

0
.0

39
0

.0
17

8

9
9

8
0

.3
4

52
0

.3
9

8
5

0
.9

9
8

6
0

.11
53

0
.0

29
6

1
0

.0
16

3
0

.0
30

9
0

.0
52

2

9
9

9
0

.3
5

0
.4

0
53

0
.0

0
1

0
.14

0
1

0
.0

4
6

3
1

0
.0

73
0

.14
73

0
.0

6
6

3

10
0

0
0

.2
6

0
6

0
.4

0
51

0
0

.13
21

0
.0

4
9

2
1

0
.0

73
0

.14
73

0
.0

6
6

3

A
vg

 D
ef

ec
ts

P

er
 P

ha
se

(M

ea
n)

0
.3

0
8

6
0

.4
0

24
0

.2
25

9
0

.0
6

8
1

0
.0

6
97

0
.9

8
0

9
0

.0
6

9
0

.0
6

87
0

.0
70

4
2.

26
36

S
td

 D
ev

0
.0

4
4

3
0

.0
0

52
0

.3
9

5
0

.0
4

6
4

0
.0

4
6

0
.0

9
4

6
0

.0
4

56
0

.0
4

6
4

0
.0

4
51

0
.7

6
8

6

D
ay

s
P

er

P
ha

se
25

20
8

0
10

15
10

5
10

5
18

0

A
vg

 D
ef

ec
ts

P

er
 D

ay
0

.0
12

34
4

0
.0

20
12

1
0

.0
0

28
24

0
.0

0
6

8
0

7
0

.0
0

4
6

4
4

0
.0

9
8

0
8

8
0

.0
13

8
0

2
0

.0
0

6
8

6
9

0
.0

14
0

71
0

.17
9

57
1

A
vg

 R
ep

ai
rs

P

er
 D

ay
0

.0
15

4
3

0
.0

25
15

1
0

.0
0

35
3

0
.0

0
8

50
9

0
.0

0
58

0
5

0
.12

26
1

0
.0

17
25

3
0

.0
0

8
58

6
0

.0
17

58
9

0
.2

24
4

6
3

D
ef

ec
t

%

P
er

 D
ay

6
.8

74
11

.2
0

52
1.5

72
7

3.
79

0
8

A
g

g
re

g
at

e
La

m
b

d
a

0
.17

9
6

M
u

0
.2

24
5

B
et

a
1

M
ea

n
2.

26
36

S
td

 D
ev

0
.7

6
8

6

April 2015

183Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

(STD), and mean (Malone & Mizell, 2009). The average of the sampling
was used along with a 180-day SDLC to determine defect rates per phase.
These were used in the Java application to simulate and provide input to
the findings in Table 4. Note the following:

TA
B

LE
 4

. F
IN

D
IN

G
S

A
N

D
 E

X
C

E
L

S
P

R
E

A
D

S
H

E
E

T
R

E
S

U
LT

S

SI
N

G
LE

 T
EA

M
TW

O
 T

EA
M

Ph
as

es
Pr

ob
ab

ili
ty

of

 W
ai

ti
ng

D
ay

s
pe

r
Ph

as
e

D
ay

s
to

R

ep
ai

r
Ph

as
es

Pr
ob

ab
ili

ty

of
 W

ai
ti

ng
D

ay
s

pe
r

Ph
as

e
D

ay
s

to

R
ep

ai
r

P
1

0
.7

6
25

18
.9

4
P

1
0

.2
3

25
5.

6
7

P
2

0
.8

20
16

.0
4

P
2

0
.2

3
20

4
.5

5

P
3

0
.8

8
0

6
4

.6
9

6
P

3
0

.2
3

8
0

18
.5

4

P
4

0
.8

10
8

.0
16

P
4

0
.2

4
10

2.
35

P
5

0
.7

9
15

11
.9

1
P

5
0

.2
3

15
3.

5

P
6

0
.7

7
10

7.
6

9
8

P
6

0
.2

2
10

2.
24

P
7

0
.8

3
5

4
.14

8
P

7
0

.2
3

5
1.1

4

P
8

0
.8

3
10

8
.3

4
8

P
8

0
.2

2
10

2.
2

P
9

0
.8

1
5

4
.0

27
P

9
0

.2
3

5
1.1

4

S
um

m
at

io
n

7.
19

18
0

14
2.

8
2

2.
0

5
18

0
4

1.3
2

A
ve

ra
g

e
0

.8
0

.2
3

H
o

ur
ly

 R
at

e
$

55
$

55

Te
am

 M
em

b
er

s
10

20

H
o

ur
s/

W
o

rk
 D

ay
8

8

C
H

 =
 C

o
st

 H
o

ur
ly

T
M

 =
 A

ve
ra

g
e

D
ev

el
o

p
m

en
t

Te
am

 S
iz

e
D

H
 =

 W
o

rk
 H

o
ur

s
p

er
 D

ay
D

R
 =

 R
ep

ai
r

D
ay

s
TC

 =
 T

o
ta

l C
o

st

C
H

 =
 C

o
st

 H
o

ur
ly

T
M

 =
 A

ve
ra

g
e

D
ev

el
o

p
m

en
t

Te
am

 S
iz

e
D

H
 =

 W
o

rk
 H

o
ur

s
p

er
 D

ay
D

R
 =

 R
ep

ai
r

D
ay

s
TC

 =
 T

o
ta

l C
o

st

TC
' =

 (
((

D
R
 •

 D
H
)

•
TM

)
•

C
H
)

TC
' =

 (
((

D
R
 •

 D
H
)

•
TM

)
•

C
H
)

Si
ng

le
 T

ea
m

 T
ot

al
 C

os
t

$6
28

,4
21

.2
0

Tw
o

Te
am

 T
ot

al
 C

os
t

$3
63

,6
33

.6
0

SA
V

IN
G

S
$2

64
,7

87
.6

0

A Publication of the Defense Acquisition University http://www.dau.mil

184 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

•	 Function point count is maintained at one function point for
the life-cycle period of 180 days. With the distribution per
phase identified along with the days per phase, the Average
Defects per Phase (ADP) is introduced with the summation
of the ADP to be the average defect per one function point.

•	 Next, the Average Defects per Day (ADD) is calculated
by dividing the ADP by the Days per Phase. This output
becomes our lambda (λ) in the phase calculation in deter-
mining our Probability of Waiting (PoW).

•	 The Average Repairs per Day (ARD) is determined by mul-
tiplying the ADD by our utilization factor of a constant 0.8
(80 percent) from best practices (Malone & Mizell, 2009).
This output becomes our mu (µ), also used in determining
the PoW.

Results
Factors used to obtain results (Table 3) follow:

•	 Average Defects per Phase = (summation of each phase
distribution)/iterations

•	 Days per Phase = variable set by experience

•	 Average Defects per Day = (Average Defects per Phase)/
(Days per Phase)

•	 Average Repairs per Day = (Average Defects per Day)/utili-
zation factor.

To make use of the facts in Table 3, a Java application (see Appendix,
Java Source Code First Page) was developed to conduct several thousand
runs for the simulation and ultimately provide a statistical summary to
support Excel findings. The facts from the spreadsheet shown in Table
4 were placed into this homebrewed java application where the user can
identify the inputs, the number of runs, and lastly, can run with either a
single-team or a two-team simulation.

Table 4 represents only one screen shot with a single distribution, while
arbitrarily using cost per hour of $55, team size of 10, and work hours per
day to equal 8. One can vary the cost factors. Taking these factors into
account, the cost formula in Equation (1) is as follows:

April 2015

185Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

Total	Cost	=	(Days	to	repair	•	work	hours	per	day	•	team	
size	•	hourly	rate).	(1)

We can begin to readily determine that the errors per phase quickly
outpace the efforts of a single developer and throw the schedule and cost
model far to the right. However, by adding a second development team to
assist with the fixing of the errors per phase, the cost and schedule are
only slightly impacted (Malone & Mizell, 2009).

One can better appreciate the long-term impacts when dealing with
contracts and why the lower bid may initially seem the best value; how-
ever, with the software development life cycle, this may not be the case.
Improper preliminary analysis and use of resources could easily whirl
the schedule and cost into an embarrassing tailspin. The core of this
research precludes this handicap.

Other findings and Excel spreadsheet results highlighted in Table 4
follow.

•	 PoW is multiplied with the Days per Phase to obtain the
Days to Repair for each specific team.

•	 Multiple variables are added to obtain realistic cost of soft-
ware development teams (such as hourly rate of developers,
team size, and hours per workday).

•	 The formula used for each team is: Total Cost = (repair days
•	work	hours	•	team	size	•	hourly	cost).

Validation
Does the lowest dollar contract actually deliver the best value? This

is what the research confirms positively.

Verification
Validation of error rates and function point rates came from Jones

(2008).

Outcomes
Development teams can determine cost at granular phases within

the SDLC as it pertains to error rates within software development.
Upon running the simulation, the aggregated results show significant
financial benefits. Factors used to obtain results are shown in Table 3
(Malone & Mizell, 2009).

A Publication of the Defense Acquisition University http://www.dau.mil

186 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

Conclusions
The article responds to the following question: When required to

analyze best-value contracts without using a simulation model, does
the requestor actually obtain true cost by analyzing a single entity
to develop software versus aggregated cost (Table 4) delivered from
an additional pool of resources? Future work along with inputs from
software development cost models will go a long way in producing a

better understanding of the true cost of software development and why
there seems to be a schedule shift as the SDLC runs through its phases.
This project scratches the surface by showing that the assumption by
most software developers that all contracts and estimates provided are
realistic, does not really portray the impact of errors to the schedules,
which further increases cost. Some conclusive findings of interest are
outlined below:

•	 Average cost per phase with single team to fix errors is an
estimated $628,421.20 with the original summation of 180
days per phase.

•	 Adding an additional team to focus on errors, thereby
increasing the cost for labor for two teams, equates to
42.14% savings. This is readily discerned in the reduced
number of days to fix the errors. In fact, the second team
will cost an estimated $363,633.60 in labor. The overall
estimated savings is $264,787.60 for the cost of the repairs.

•	 Future and long-term analysis should focus on specific
methodologies as well as on the coding language.

If the errors are identified in the early stages of a
software development acquisition, contracting
officers may be in a better position to avoid the
lowest contract bid if they understand where
proper resources, when applied, may actually
decrease cost and schedule, thus delivering a
successful acquisition and software functionality.

April 2015

187Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

•	 Many organizations have invested in the use of the waterfall
methodology and have been slow to appreciate the potential
cost and schedule impact from error rates within the mul-
tiple phases of the SDLC.

•	 This article aimed to present a DES and MCS to determine
an outcome that can be used to improve a process and cut
costs. The error rate analysis project has done just that.

•	 Through lengthy discussions about rates within the MCS
portion and the impact on business development systems,
additional research and refinement may be sought to fur-
ther develop the phase rates from within an organization.
Additional research will provide better understanding of
the impact for long-term software development and error
rate impact.

•	 It is hoped that this and later work will enable future profes-
sionals in software development acquisition to establish a
more definite cost analysis when confronting quantifiable
data such as function points and development languages to
give them a better understanding of the impact of develop-
ment errors within the different phases of the waterfall
SDLC.

An SDLC is a methodological process that from a high level can be used
to determine schedules and costs and identify bottlenecks. However, it
seems only recently that declining information technology budgets and
increasing delivery costs require us to slice the life cycle into further
granularity to understand better the cost and schedule impacts. In an
attempt to correlate errors with phases and cost to fix, a prevailing
assumption is that the cost of errors is flat. However, this may not be so.
If the errors are identified in the early stages of a software development
acquisition, contracting officers may be in a better position to avoid the
lowest contract bid if they understand where proper resources, when
applied, may actually decrease cost and schedule, thus delivering a suc-
cessful acquisition and software functionality.

A Publication of the Defense Acquisition University http://www.dau.mil

188 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

 References
Aoyama, M. (2012). Computing for the next-generation automobile. IEEE

Computer, 45(6), 32–37.
Ferreira, S., Collofello, J., Shunk, D., & Mackulak, G. (2009). Understanding the

effects of requirements volatility in software engineering by using analytical
modeling and software process simulation. Journal of Systems and Software,
82(10), 1568–1577.

Jones, C. (2008). Applied software measurements: Global analysis of productivity
and quality. New York: McGraw-Hill.

Ledin, J. (2001). Simulation engineering—Build better embedded systems faster.
Lawrence, KS: CMP Books.

Malone, L., & Mizell, C. (2009). Simulation model of spiral process. International
Journal of Software Engineering, 2(2), 1–12.

Sahinoglu, M. (2007). Trustworthy computing: Analytical and quantitative
engineering evaluation. Hoboken, NJ: Wiley & Sons.

Sahinoglu, M. (2013). Modeling and simulation in engineering. Wiley
Interdisciplinary Review Series (WIREs) Comput Stat 2013, 5, 239–266.

Zhang, H., Kitchenham, B., & Pfahl, D. (2008). Reflections on 10 years of
software process simulation modeling: A systematic review. Proceedings of
International Conference on Software Process (ICSP 2008), Lecture Notes in
Computer Science (Vol. 5007, pp. 345–356), Leipzig, Germany, May 10–11.

Zhang, H., Kitchenham, B., & Pfahl, D. (2010). Software process simulation
modeling: An extended systematic review. Proceedings of International
Conference on Software Process (ICSP 2010), New Modeling Concepts for
Today's Software Processes (pp. 309–320), Paderborn, Germany, July 28–29.

April 2015

189Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

Appendix
JAVA SOURCE CODE FIRST PAGE

//package negexp;
// W. Kramer

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Random;
import java.text.*;

public class NegExp extends JFrame {

//elements of user interface
 private JLabel trialsJLabel;
 private JLabel meanJLabel;
 private JLabel devJLabel;
 private JLabel MuJLabel;
 private JLabel BetaServiceJLabel;
 private JLabel errorRateJLabel;
 private JLabel LambdaJLabel;
 private JLabel BetaJLabel;
 private JLabel servTimeJLabel; //package negexp;
// W. Kramer

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Random;
import java.text.*;

public class NegExp extends JFrame {

A Publication of the Defense Acquisition University http://www.dau.mil

190 Defense ARJ, April 2015, Vol. 22 No. 2 : 174–191

Author Biographies

Mr. William F. Kramer has over 25 years
in the Information Technology field. He has
developed, sustained, and operated military
information systems. His experience includes
application design, development, software
life-cycle management, and systems engi-
neering. His education includes a BS in
Computer Science from Chapman University,
an MS in Management Science from Faulkner
University, and an MS in Cybersystems and
Information Security from Auburn University
at Montgomery. Mr. Kramer is retired from the
U.S. Air Force, with 20 years’ active duty. He
is currently employed with the U.S. Air Force
as a federal civilian.

(E-mail address: wkramer@aum.edu)

Dr. Mehmet Sahinoglu is the founder/
director of the Informatics Institute, and
the Cybersystems and Information Security
(C SI S) g r a du a t e pr o g r a m a t A ubu r n
University in Montgomery. As an Institute
of Electrical and Electronics Engineers
senior member and a Fellow of the IEEE
Signal Processing Society, he authored 120
conference proceedings, 50 journal articles,
Trustworthy Computing by Wiley (2007),
Cyber-Risk Informatics by Wiley (2015),
and managed 15 grants. Dr. Sahinoglu holds
a PhD from Texas A&M and an MS from
University of Manchester Institute of Science
and Technology in Electrical and Computer
Engineering, respectively.

(E-mail address: mesa@aum.edu)

April 2015

191Defense ARJ, April 2015, Vol. 22 No. 2: 174–191

Dr. David Ang is an industrialist and a
business professor, with 20-plus years of
experience in many facets of business from
both a pragmatic perspective and real-life
applications. He has published more than
70 articles in academic business research
journals and conference proceedings. Dr. Ang
holds a PhD in Industrial Management and
Systems Engineering from the University of
Alabama in Huntsville.

(E-mail address: dang@aum.edu)

