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Cost growth is a persistent adversary to efficient budgeting in the Department 
of Defense. Despite myriad studies to uncover causes of this cost growth, 
few of the proposed remedies have made a meaningful impact. A key reason 
may be that DoD cost estimates are formulated using the highly unrealistic 
assumption that a program’s current baseline characteristics will not change 
in the future. Using a weather forecasting analogy, the authors demonstrate 
how a statistical approach may be used to account for these inevitable baseline 
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changes and identify related cost growth trends. These trends are then used 
to reduce the error in initial acquisition cost estimates by over one third for 
major defense acquisition programs, representing a more efficient allocation 
of $6 billion annually.
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The Not-So-Perfect Storm
Inaccurate cost estimates have long plagued Department of Defense 

(DoD) acquisition efforts. Despite the myriad acquisition reforms, and 
abundant detailed guidance on cost estimating best practices, accurately 
predicting the eventual cost of a weapon system remains difficult. A 
Government Accountability Office (GAO) study of all 96 active major 
defense acquisition programs (MDAP) in 2011 showed a total cost 
increase of over $74 billion in that year alone (GAO, 2012a)—an amount 
that would have paid for the 2013 defense sequestration cuts nearly twice 
over. The total MDAP portfolio cost continued to grow into 2013, despite 
a trend of reduction in the number of programs (GAO, 2014). A RAND 
study of completed major acquisition programs showed that the aver-
age cost estimate error measured from Milestone B is about 65 percent 
(Arena, Leonard, Murray, & Younossi, 2006a). This figure is an average 
of overestimates and underestimates; the absolute error is even higher. 
While researchers and practitioners may disagree on the efficacy of 
recent acquisition reforms upon improving cost estimates, clearly, there 
is ample room for improvement. 

Perhaps the problem does not lie with the accuracy of the cost estimates, 
but with the fact that these estimates are accurately estimating the 
wrong thing. For example, when the RAND study corrected the cost data 
for changes in procurement quantity, the average cost errors dropped by 
over 20 percent (Arena et al., 2006a), and the GAO (2012a) study attrib-
uted nearly 40 percent of the $74 billion increase to quantity changes. If 
we expect accurate estimates of the final cost of acquisition programs, 
then we must take into account the uncertainty associated with program 
baselines upon which these estimates are based. We propose a method 
for correcting initial acquisition cost estimates using observed baseline 
deviations from similar past programs, thus reducing the average cost 
growth over these early estimates.

The Defense Acquisition University (DAU) defines cost growth as “the 
net change of an estimated or actual amount over a base figure pre-
viously established.”1 Many studies cite changes to the Acquisition 
Program Baseline (APB) as among the most significant sources of 
cost growth (Arena et al., 2006a; Drezner, Jarvaise, & Hess, 1993; 
GAO, 2012a). These studies often correct the cost estimates for these 
changes in an attempt to determine the programmatic causes for the 
cost overruns. In this way, researchers “maintain the integrity of the 
baseline” (Drezner et al., 1993, p. 11). These baseline-corrected analyses 



January 2015

87Defense ARJ, January 2015, Vol. 22 No. 1 : 84–105

are useful for driving acquisition reform, but they are less useful for 
informing resource allocation and affordability assessments, which 
are inherently more concerned with accurate prediction of actual  
program expenditures. 

Will Cost, Should Cost, and Real Life
In a 2011 memorandum from the Assistant Secretary of the Air Force, 

Financial Management and Comptroller, and the Air Force Acquisition 
Executive (Department of the Air Force, 2011), the Air Force established 
the practice of generating two different cost estimates dubbed Will Cost 
and Should Cost. The Should Cost estimate is “based on realistic tech-
nical and schedule baselines and assumes success-oriented outcomes." 
In contrast, the Will Cost estimate is based on an independent estimate 
that “aims to provide sufficient resources to execute the program under 
normal conditions” (Department of the Air Force, 2011, p. 4). This notion 
that a program may cost something more than it should cost implicitly 
acknowledges that things don’t always go as desired. Also, this concept 
sets the precedent that allowances may be made for difficulties through 
cost-estimating relationships that reference past development and pro-
duction efforts as a benchmark. 

In actuality, the Should Cost estimate does not incorporate enough real-
ism. For example, common sources of cost growth, such as procurement 
quantity changes, are not included in the Should Cost estimate since this 
estimate is still based on the APB. This baseline specifies parameters 
such as procurement quantity, performance characteristics, program 

A more accurate prediction of the eventual cost 
of an acquisition program provides a better 
assessment of that program’s affordability, thus 
better informing affordability decisions.  
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duration, and so on. However, these baselines almost never remain con-
stant (Drezner & Krop, 1997), leading inevitably to changes in program 
cost and crippling early estimating efforts. 

A more accurate prediction of the eventual cost of an acquisition program 
provides a better assessment of that program’s affordability, thus better 
informing affordability decisions. Therefore, the DoD needs a method 
for accurately estimating the final cost of an acquisition effort without 
relying on a fixed baseline. In this research, we have developed a novel 
method to correct early program cost estimates using high-level descrip-
tive programmatic parameters. Advanced regression techniques establish 
a relationship between these parameters and the cost estimate error of 
past programs, and then use this relationship to predict estimate error 
in similar future programs. This method is dubbed “macro-stochastic” 
estimation (Ryan, Schubert Kabban, Jacques, & Ritschel, 2013, p. 3). 

The National Oceanic and Atmospheric Administration (NOAA) uses a 
similar technique in the forecasting of hurricanes, a domain that has seen 
prediction accuracy triple in the last two decades (Silver, 2012). This fact 
is intriguing, because the challenges associated with predicting the path 
of a hurricane are remarkably similar to those of trying to predict and 
budget for the cost trajectory of a DoD program. In both cases, an extraor-
dinary number of discrete, nonlinear elements all interact in exceedingly 
complex ways, serving to greatly complicate the task of predicting overall 
system behavior. And while the two phenomena both present similar esti-
mating challenges, the modeling approaches and reporting conventions 
vary significantly. 

We Know What a Bad Prediction 
Looks Like

For a moment, imagine that meteorologists forecast hurricanes in the 
same manner that the DoD budgets for acquisition programs. The local 
news channel reports that a hurricane has formed in the Caribbean. An 
expert team of meteorologists carefully examines the key characteristics 
of this newly formed hurricane, including its current location, size, speed, 
and heading. Based on this information, the meteorologists then officially 
announce their prediction for the hurricane: it will be a Category 2 hur-
ricane that makes landfall at the intersection of Main Street and Third 
Avenue in Corpus Christi, Texas. The residents of Corpus Christi are 
notified of the threat. But, 24 hours later, the meteorologists follow this 
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same process, and provide an equally detailed—but vastly different—
prediction. The Day 2 prediction is updated to take into account a new 
trajectory and larger size; now the storm is predicted to make landfall at 
the Northeast corner of the Walmart store in Cameron, Louisiana, as a 
Category 3 hurricane. The next day, this process repeats, predicting an 
even larger hurricane with a new landfall point in the parking lot of the 
Spinnaker Beach Club in Panama City, Florida. These volatile predic-
tions are depicted in Figure 1. 

You might reasonably have many concerns about these estimates. For 
example, how likely is it that the hurricane will actually make landfall 
at these precise locations? You might wonder why each estimate only 
considers the current state of the hurricane as opposed to how it might 
change over time. And, of course, you might be highly skeptical of any 
set of estimates that varies so widely. But, this scenario does have some 

FIGURE 1. AN ACCURATE (BUT LESS USEFUL) METHOD FOR 
FORECASTING HURRICANES
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unfortunate similarities with the DoD cost-estimating and budgeting 
processes. Although cost estimators carefully account for uncertainty 
in their cost estimates (based on a fixed APB), the official prediction 
is recorded into the budget as a point estimate. Their cost estimates 
typically include no consideration for a change in trajectory, and no 
indication of uncertainty in the eventual budget request. Just like in our 
fictitious forecasting scenario, we have an early prediction, but it is not 
a very good one since it is almost guaranteed to change. Updating the 
absurdly specific budget request at each milestone is not an adequate 
solution for addressing this change since substantial resources will 
have already been committed according to the original baseline. In fact, 
a common engineering adage presumes that 75 percent of the design 
cost is committed in the first 25 percent of the life cycle (Blanchard & 
Fabrycky, 2011). 

Of course, this is not the way meteorologists forecast hurricanes. NOAA 
uses supercomputers running millions of advanced physics simulations 
to calculate the outcomes of minor changes in the weather’s initial 
conditions, and these outcomes are combined to form a probabilistic 
prediction (e.g., “There is a 10 percent chance of rain today”). These 
simulations are supervised by experienced meteorologists, using their 
knowledge of past weather patterns to improve forecast accuracy by up 
to 25 percent over computer simulation alone (Silver, 2012). This mar-
riage of cold calculations and “squishy” probabilistic judgments carries 
over to hurricane prediction; to predict the storm’s path, NOAA uses this 
method of human-mediated simulation (Ferro, 2013). 

But for the prediction of hurricane strength, forecasters turn to what is 
essentially macro-stochastic estimation. They “compare basic informa-
tion from the current storm, like location and time of year, to historic 
storm behavior,” and use this information to predict the storm’s strength 
(Ferro, 2013). In other words, top-level descriptive parameters are used 
to associate this storm with previous storms. The implicit assumption 
is that the current hurricane will perform similar to past hurricanes, as 
long as the right descriptive parameters are chosen. This combination of 
detailed simulation, coupled with statistical techniques (not to mention 
a healthy respect for uncertainty) produces the most useful estimate 
for informing evacuation decisions. That is, it results in a reasonably 
accurate prediction as early as possible. 
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However, embracing uncertainty is not synonymous with imprecision; 
for a prediction to be useful, it must not be overly vague. Most people are 
acquainted with the graphic that weather forecasters use to illustrate 
the expected path of hurricanes; an example is shown in Figure 2. This 
familiar visual form of prediction has two important elements:

1. The Cone: the region of uncertainty that shrinks as the 
storm approaches land and provides an idea of the confi-
dence in the estimate.

2. The Curve: the change in trajectory that indicates the pre-
dicted path the storm will take.

FIGURE 2. NOAA HURRICANE TRACKER, SHOWING LANDFALL 
PREDICTION FOR HURRICANE KATRINA  

Image Adapted from NOAA National Hurricane Center
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The Cone
The entire body of recent DoD cost-estimating guidance empha-

sizes the importance of risk analysis, sensitivity analysis, and the 
reporting of confidence in the program cost estimates (GAO, 2009; U.S. 
Air Force, 2007).1 In fact, one might admire the similarity between 
NOAA’s hurricane-tracking chart and a notional graphic from the GAO 
Cost Estimating and Assessment Guide (Figure 3) that illustrates the 
trajectory of a cost estimate baseline, with its accompanying cone of 
uncertainty (GAO, 2009). Unfortunately, the complex DoD process for 
turning an estimate into a budget does not possess a mechanism for 
incorporating uncertainty. Despite the best efforts of cost analysts to 
inform their customers of the confidence and possible risk in their cal-
culations, these warnings are often interpreted as being too vague—a 
sentiment once expressed by an irate Harry S. Truman, who famously 
declared: “Give me a one-handed economist! All my economists say, ‘on 
the one hand, on the other’ ” (Krugman, 2003). Incorporating uncertainty 
in budgeting activities requires a transformation in the way we think 
about resource planning. The first step in catalyzing such a revolution 
is likely to make provisions (or mandates) for reporting cost estimate 

FIGURE 3. CONCEPTUALIZATION OF COST ESTIMATE 
TRAJECTORY AND CERTAINTY OVER TIME 
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uncertainty and confidence in acquisition status reports.1 However, 
acquisition reform is beyond the scope of this study. Instead, we will 
focus primarily on “The Curve.”

The Curve
It is not always reasonable to expect that the DoD can acquire a 

new weapon system for the Milestone B “sticker price.” As one author 
recently noted, “Cost Discovery might be a better term for the process 
of updating estimates, because in retrospect it was clearly impossible 
to produce the stated capabilities for the original price” (Cancian, 2010, 
p. 396). It is rational to expect the rigors of research, development, and 
testing after Milestone B to uncover additional requirements that neces-
sitate additional funding. But, if we are unable to completely avoid this 
“cost discovery,” perhaps we should focus our efforts on predicting it. For 
example, consider the following questions:

•	 Is it true that an Air Force fighter aircraft program is likely 
to procure fewer aircraft than originally planned?

•	 Do Joint programs have significantly higher acquisition 
cost growth than non-Joint ones?

•	 Is the occurrence of a Nunn-McCurdy breach in a program 
a good indicator of future threshold breaches?

If we are able to hypothesize a relationship between these top-level pro-
gram characteristics, then it is possible to examine past data to test if 
this relationship exists. Furthermore, if the relationship between these 
elements is, in fact, deemed statistically and practically significant, then 
we may apply this relationship to correct estimates in new programs. 
Macro-stochastic estimation is used to accomplish these goals.

Macro-Stochastic Estimation
To implement the macro-stochastic estimating technique described 

earlier, we first have to decide what high-level (macro) parameters are 
the most strongly associated with cost estimate errors. Next, we have 
to decide what constitutes a “similar program” so that we may apply the 
technique correctly on future data. In support of these pursuits, we have 
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created a database that tracks 75 distinct characteristics of MDAPs.2 
The Selected Acquisition Reports (SAR) for these programs are the 
source for our database. 

Programs that have expended at least half of their planned funding are 
considered for entry in the database since these programs have sufficient 
data to measure trends in early program life. Also, only programs with 
a Milestone B date of 1987 or later are included. This cutoff date allows 
for a sufficient number of programs to estimate key characteristics and 
also maintains some continuity and relevance with current programs 
(Smirnoff & Hicks, 2007). This filtering process results in a sample of 
937 SARs describing 70 programs from the Army, Navy, and Air Force. 
For each SAR, we compare the program’s estimate of total acquisition 
cost against the actual cost specified in the program’s final SAR. This 
ratio of estimated cost from a particular SAR to the final cost is defined 
as the Cost Growth Factor (CGF). For example, a program with a CGF of 
1.3 indicates that the actual cost of the program was 30 percent higher 
than the original estimate. A program that perfectly estimated its final 
cost would have a CGF of 1.0.

A statistical technique known as mixed-model regression is applied to 
identify the parameters most strongly associated with changes in the 
final cost of a given program. This advanced statistical methodology is 
required due to the longitudinal nature of SAR analysis; that is, repeated 
measurements of the same program are expected to be correlated, vio-
lating a fundamental assumption of basic linear regression. Iteratively 
testing parameters in the dataset results in an efficient model of CGF 
containing the six parameters shown in Table 1. 

It may seem like an oversight to omit an explanation of how each of these 
parameters affects CGF (that is, positively or negatively). In this case, the 
reason for this omission is related to the mixed-model methodology, and 
would surely have frustrated former president Truman, as the relation-
ship varies depending on the program. Importantly, these six parameters 
are combined in different ways to create models tailored to specific 
groupings of programs, as described in the discussion that follows. 
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Method
The mixed-model regression technique introduces flexibility that 

allows the analyst to generate different models for different groupings of 
programs. To return to our hurricane example, storms in the Caribbean 
might behave differently than those in the Atlantic. This difference 
may be taken into account by grouping the hurricane data into two bins, 
perhaps called Caribbean and Atlantic, and allowing the regression to 
generate separate estimates according to this partition. This feature 
is very powerful, since it can resolve patterns that might otherwise be 

TABLE 1. SIGNIFICANT MODEL PARAMENTERS

Parameter Description Fixed/Variable

Service 
Component

Identifies the executive military 
service (Army, Navy, or Air 
Force) that leads the acquisition 
program. Marine Corps programs 
are identified as belonging to 
the Navy.

Fixed

Development to 
Production Ratio

The ratio of the number of 
years a program spends in 
development to the number of 
years the program spends in 
production.

Variable

Count of 
Development 
APBs

This parameter tracks the 
number of times a new baseline 
is generated during the 
development phase.

Variable

Acquisition Cost The total estimated program 
acquisition cost, as reported 
annually in the SAR.

Variable

Quantity Change This parameter is tracked as a 
ratio of the procurement quantity 
planned in a given year to the 
original Milestone B procurement 
quantity.

Variable

Year Count The sequential numbering of 
the program year, starting with 
Milestone B as year one. The 
presence of this parameter 
ensures the model is capable of 
predicting the estimate trends 
across time.

Fixed



A Publication of the Defense Acquisition University http://www.dau.mil

96 Defense ARJ, January 2015, Vol. 22 No. 1 : 84–105

averaged out when the dataset is analyzed as a whole. More importantly, 
this feature allows us to bin acquisition programs into groups according 
to similarities in the behavior of their cost estimate error. When we wish 
to predict the CGF in a new program, we can apply the most appropriate 
model of estimate errors by determining the most suitable group for the 
new program. 

The way programs are grouped is critical to the predictive power of 
the macro-stochastic technique. In theory, we could put all programs 
into the same group; but what we gain in broad model applicability, we 
sacrifice in accuracy. If the cost growth behavior for each of these pro-
grams was essentially the same, we wouldn’t be so regularly thwarted 
when trying to produce a useful budget. Conversely, we could go with the 
opposite extreme and create a regression that examines each program 
individually by only assigning one program to each group. This grouping 
method results in a different model for each program and reduces nearly 
99% of the error in program cost estimates! However, this accuracy is 
gained at the expense of utility. Future programs cannot be assigned 
to an existing group that is uniquely defined. The critical task, then, is 
to determine the most beneficial way to group the programs in order to 
balance accuracy with predictive capability.

Program Grouping
In this study, programs are grouped according to the categorical 

variables that are most strongly correlated with the CGF. These variables 
are simply characteristics of the program that are known in the first year, 
and reported in the first SAR. For example, final cost growth tends to be 
higher for new-start programs than programs that are essentially modifi-
cations or variants of existing weapon systems. Therefore, identification 
of program iteration is used to distinguish program groupings. The 
implicit assumption with this approach is that programs with similar 
overall cost growth will also exhibit similar cost growth patterns. The 
variables selected to bin programs are defined below.

1. Program Type. Based on the program description in the 
SAR, each program is placed into one of seven categories: 
Aviation, Electronic, Ground Vehicle, Maritime, Munition, 
Space, and Space Launch. These categories are consistent 
with previous program type categorizations (Arena et al., 
2006a; Drezner et al., 1993).
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2. Iteration. This variable states whether a program is new, 
a lettered-variant on an existing program (e.g., the F-16 
C/D), or a modification to an existing program (e.g., the C-5 
Avionics Modernization Program).

3. Number of Years Funded. This variable describes the num-
ber of years the program is expected to be funded. This 
variable may change due to funding volatility.

4. Joint. This binary variable indicates whether a program is 
Joint between two or more Services.

Program groups are created by dividing each of the variables into levels, 
ensuring sufficient sample size within each level. A program is assessed 
a CGF “score” based on the applicable level for each of the four variables. 
The program group is the sum of the CGF scores across the four vari-
ables. Each program is scored in this manner, and the total scores from 
each program form the six program groups shown in Figure 4.3

FIGURE 4. PROGRAM GROUPS RESULTING FROM CGF SCORES 
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Validation and Results
The mixed-model regression uses the program groups in 

Figure 4 to fit different models using the significant CGF pre-
dictors shown previously in Table 1. However, due to relatively 
few programs in certain groups, validating the model is neces-
sary without omitting too many of our samples for this 
purpose. Consequently, we validate the model using 
a technique that omits program data in a round-robin 
fashion, predicting the CGF of the omitted program 
and then replacing the data to make the prediction for 
the next omitted program. This validation is a type of Leave 
One Out Cross-Validation tailored to multilevel or mixed mod-
els (Ryan et al., 2013). It results in the aggregation of 70 separate 
analyses (one for each program) into a single set of results that reflects 
the expected predictive power of the macro-stochastic model. The vali-
dated model produces a set of predicted CGFs for every program estimate 
throughout the life of every program in our sample. If this version of the 
model is deemed reasonably powerful, then the original fitted model is 
considered validated and is the final model reported for inference.

Using the validated results, the predicted CGF for any SAR that meets 
the established completion criteria may be used to correct the cost 
estimate in that SAR, but some of these corrections will be more use-
ful than others. Since the SAR estimates get progressively better over 
time, there is equivalently less CGF error for the model to correct, thus 
reducing the average predictive performance of the model as a program 
matures. Consequently, the macro-stochastic technique is most useful 
when applied to correct the earliest cost estimates in a program. In fact, 
for each additional percentage of program expenditure, the model loses 
approximately three-quarters of a percent of its predictive power.

The 70 programs in our dataset displayed a mean CGF of 1.44, measured 
from the initial SAR estimate. This means that the programs underesti-
mated their eventual cost by 44%, on average. However, this is an average 
of underestimates and overestimates. For the purposes of resource allo-
cation, under and overestimation of budgetary requirements may both 
be considered detrimental because dollars allocated to one program can-
not be easily transferred to another. Since the model seeks to minimize 
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cost estimate errors regardless of direction, the absolute 
estimate error is a more appropriate measure. Our sample 

showed a mean absolute error of 57%. 

In contrast, after applying the macro-stochastic 
technique, the model-corrected CGF for these 
initial estimates averaged 0.93—slightly over-
estimating, but closer to the ideal 1.0 CGF. As 

shown in Figure 5, the average absolute error for model-
corrected estimates was 27%, representing a 19% reduction in 

the average absolute cost estimate error, across all programs. However, 
model performance is best in early program life; the average error reduc-
tion in the first estimate is 37%. Also, since the six program groups are 
assigned by assessing the severity of their cost growth, we expect that 
the most significant improvement will be seen when the model is applied 
to the “high-growth” programs. When the algorithm is applied to the first 
estimate of programs in CGF categories four through six, 90% of these 
estimates are improved, with an average error reduction of 45%.

FIGURE 5. SUMMARY OF VALIDATED MODEL PERFORMANCE 
ACROSS ALL 70 PROGRAMS 
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Reporting model performance as a percent improvement is useful 
because it normalizes programs of disparate cost. However, since our 
research focuses on real dollars, it is important to convert the percent 
error reduction into a dollar amount to demonstrate model efficacy. The 
absolute percent error for each program is multiplied by its final cost and 
converted to base year 2013 dollars in order to establish the total dollar 
amount reallocated by the validated model. The aforementioned 19% 
reduction in error equates to $119.5 billion, in base year 2013 dollars. 
If the total cost of these programs is scaled to equal that of the current 
DoD MDAP portfolio (DoD, 2013), then this macro-stochastic model 
could potentially allocate $6.24 billion more efficiently every year, if 
consistently applied to the first estimate of new MDAPs.

What This Technique Is Not
These results clearly illustrate the utility of the macro-stochastic 

cost-estimating approach. But, as is often the case with statistical tools, 
it is perhaps equally important to manage expectations by explaining a 
few of the applications for which this technique is ill-suited.

1. Adjusting cost estimates at the program office level. The 
efficacy of the model deteriorates rapidly and, even when 
applied to the first estimate of every program, only about 
72% of program estimates are improved. This notion that 
estimates are only improved on average can be a significant 
source of doubt when it suggests that a program’s rigorously 
developed estimate might be 44% too low. However, the 
average cost of programs is sufficient for informing bet-
ter affordability decisions when considering a portfolio of 
assets. 

2. Placing blame and driving acquisition reform. Macro-
stochastic estimation eschews the typical cause-and-effect 
relationship that so many other acquisition studies seek to 
uncover. Rather, the model draws its power from the cor-
relation between seemingly unrelated things. For example, 
it would be incorrect to say that the Service Component 
causes cost growth; it is simply an observed correlation. 
This lack of causality makes this model ill-suited for sug-
gesting changes to the acquisition process.
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3. Placing bounds on a traditional cost estimate. The full text 
of this study (DeNeve, 2014) explains the prediction inter-
vals that surround the estimates of CGF. However, these 
alone do not constitute the “cone of uncertainty” discussed 
earlier in this article. With changes to the APB, the distri-
bution around the predicted CGF and the cost estimate 
will change. Both of these distributions must be taken into 
account when placing bounds on the model-corrected final 
cost estimate. This is a subject for future work.

Conclusions
The existing paradigm for reporting acquisition cost based on a fixed 

APB results in unrealistic budgets and chronically inefficient resource 
allocation. In the current environment of fiscal restraint, embracing 
uncertainty can help provide a more realistic view of a program’s true 
affordability. Acknowledging the likelihood of changes to a program’s 
baseline grants the freedom to leverage past data and predict trends 
in cost-estimate performance. While not suitable as a low-level cost 
estimating tool, this study demonstrates such a method to reduce cost-
estimate error in the earliest estimates of major defense programs, 
helping to stabilize long-term, portfolio-level budgets. As demonstrated 
by Figure 5, our model achieves the 
most significant error reduction early in 
program life, when accurate estimates 
are crucial for resource allocation and 
affordability decisions. In fact, nearly 
half of the estimate error is reduced 
when the model is applied early to the 
most growth-prone acquisition pro-
grams. As with hurricane forecasting, 
the optimal approach for acquisition 
cost estimation is likely a combination 
of techniques that focuses on providing 
the most useful estimate, even if this 
means embracing the uncertain nature 
of defense acquisition. 



A Publication of the Defense Acquisition University http://www.dau.mil

102 Defense ARJ, January 2015, Vol. 22 No. 1 : 84–105

References
Arena, M. V., Leonard, R. S., Murray, S. E., & Younossi, O. (2006a). Historical cost 

growth of completed weapon system programs. Santa Monica, CA: RAND 
Corporation.

Blanchard, B. S., & Fabrycky, W. J. (2011). Systems engineering and analysis (5th 
ed.). Upper Saddle River, NJ: Prentice Hall.

Cancian, M. F. (2010). Cost growth: Perception and reality. Defense Acquisition 
Review Journal, 17(3), 389–403.

DeNeve, A. (2014). A macro-stochastic approach to improved cost estimation for 
defense acquisition programs (Master's thesis). AFIT-ENV-14-M-20. School 
of Engineering and Management, Air Force Institute of Technology, Wright-
Patterson AFB, OH. 

Department of the Air Force. (2011). Implementation of will-cost and should-cost 
management [Memorandum]. Washington, DC: Offices of the Assistant 
Secretary of the Air Force (Financial Management & Comptroller) and Air 
Force Acquisition Executive.

Department of Defense. (2013). National defense budget estimates for FY 2014. 
Washington, DC: Office of the Under Secretary of Defense (Comptroller).

Drezner, J., Jarvaise, J., & Hess, R. (1993). An analysis of weapon system cost 
growth (Report No. MR-291-AF). Santa Monica, CA: RAND Corporation.

Drezner, J., & Krop, R. (1997). The use of baselining in acquisition program 
management. Santa Monica, CA: RAND Corporation.

Ferro, S. (2013). Why it's so hard to predict hurricanes. Popular Science. Retrieved 
from http://www.realclearscience.com/2013/08/30/why_it039s_so_hard_
to_predict_hurricanes_254806.html

Government Accountability Office. (2009). Cost estimating and assessment guide 
(Report No. GAO-09-3SP). Washington, DC: Author.

Government Accountability Office. (2012a). Defense acquisitions: Assessments of 
selected weapon programs (Report No. GAO-12-400SP). Washington, DC: 
Author.

Government Accountability Office. (2012b). Defense logistics: Improvements 
needed to enhance oversight of estimated long-term costs for operating and 
supporting major weapon systems (Report No. GAO-12-340). Washington, 
DC: Author.

Government Accountability Office. (2014). Defense acquisitions: Assessments of 
selected weapon programs (Report No. GAO-14-340SP). Washington, DC: 
Author.

Krugman, P. (2003). The one-handed economist. London: Economist Newspaper 
Ltd.

Ryan, E., Schubert Kabban, C., Jacques, D., & Ritschel, J. (2013). A macro-
stochastic model for improving the accuracy of Department of Defense life 
cycle cost estimates. Journal of Cost Analysis and Parametrics, 6(1), 43–74.

Silver, N. (2012). The signal and the noise. New York: Penguin.
Smirnoff, J., & Hicks, M. (2008). The impact of economic factors and acquisition 

reforms on the cost of defense weapon systems. Review of Financial 
Economics, 17(1), 3–13.



January 2015

103Defense ARJ, January 2015, Vol. 22 No. 1 : 84–105

U.S. Air Force. (2007). U.S. Air Force cost risk and uncertainty analysis handbook. 
Bedford, MA: Telecote Research. 

Weapon Systems Acquisition Reform Act of 2009, 10 U.S.C., Pub. L. 111-23 (2009).

Endnotes
1The Defense Acquisition Guidebook dictates that MDAPs “must state the confidence 
level used in establishing a cost estimate…in the next Selected Acquisition Report 
prepared in accordance with 10 U.S.C. § 2423” (DAU, n.d., Chap 3, §3.4.1). The 
referenced section of U.S. Code contains no such requirement, and few SARs currently 
report confidence in their estimates.

2MDAPs are the largest programs in the DoD, defined by having more than $509 
million for Research, Development, Test & Evaluation, or more than $3 billion for 
procurement in Base Year 2010 dollars (Weapon Systems Acquisition Reform Act, 
2009). In fiscal year 2014, MDAPs constituted 40 percent of the acquisition funding 
for the DoD (DoD, 2013) and since 1969, they have been required to submit a 
standardized annual report of their status, called the Selected Acquisition Report 
(GAO, 2012b).

3This scoring methodology is explained in far greater detail in the full text of the study 
(DeNeve, 2014).
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