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Leveraging the use of statistical methods is critical in 
providing defensible test data to the Department of 
Defense Test and Evaluation (T&E) enterprise. This article 
investigates statistical tolerance intervals in designed 
experiments for the T&E technical community. Tolerance 
intervals are scarcely discussed in extant literature as 
compared to confidence/prediction intervals. The lesser 
known tolerance intervals can ensure a proportion of the 
population is captured in the design space, and have the 
ability to map the design space where factors can be 
reliably tested. Further, the article investigates several 
two-sided approximate tolerance factors estimated by 
Monte Carlo simulation and compares them to the exact 
method. Finally, the applicability of tolerance intervals to 
the defense T&E community is presented using a simple 
case study.
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In the FY 2012 Annual Report from the Director, Operational Test 
and Evaluation (DOT&E), the director identified two areas as requiring 
further improvement to move toward institutionalizing statistical rigor: 
(a) “execution of testing in accordance with the planned test design” and 
(b) “analysis of test data using advanced statistical methods commen-
surate with test designs developed using DOE [Design of Experiments]” 
(Gilmore, 2012a, p. v). The report further states that current data analysis 
is “limited to reporting a single average (mean) of the performance across 
all the test conditions” (p. v). In doing so, efficiencies achieved through 
meticulous test planning and design are discarded. Realizing the need 
for increased rigor, a Defense Science of Test Research Consortium 
was formed in 2011, partnered with Arizona State University, Virginia 
Polytechnic Institute and State University, Naval Postgraduate School, 
and the Air Force Institute of Technology (AFIT). The consortium’s 
overall research goal is to support the incorporation of advanced statisti-
cal rigor and mathematical foundations into the test enterprise (AFIT, 
2012). Research largely focuses on improved experimental design and 
statistical theory (Freeman, Ryan, Kensler, Dickinson & Vining, 2013; 
Haase, Hill, & Hodson, 2011; Hill, Gutman, Chambal, & Kitchen, 2013; 
Johnson, Hutto, Simpson, & Montgomery, 2012). The research of toler-
ance intervals in designed experiments has yet to be fully discussed. This 
article continues the research dialogue and adds to the body of knowl-
edge of tolerance interval literature in defense testing, particularly the 
Scientific Test and Analysis Techniques (STAT) implementation effort. 
Further, this article aims to assist primarily test and evaluation (T&E) 
practitioners such as engineers, analysts, and test project/program man-
agers in understanding how the use of statistics can greatly improve the 
quality of results in the decision-making process and improve credibility 
through objective data. 

Purpose

The purpose of this article is twofold. First, tolerance intervals 
are rarely discussed in extant literature as having application to the 
defense T&E community. This research closes the gap by exploring the 
applicability of tolerance intervals in designed experiments. An attempt 
to use tolerance intervals in defense testing was investigated by the 
National Research Council (NRC) of the National Academies on test-
ing body armor materials. Their recently published work (NRC, 2012) 
recommended use of statistical tolerance bounds, but their examples 
were confined to single, normally distributed samples, and did not take 
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into account the design structure. Second, increased statistical rigor is 
needed in defense testing and analysis due to the complexity and chal-
lenges in testing a defense weapon system. Recently, the use of STAT has 
gained traction within the Department of Defense (DoD) T&E commu-
nity (DoD, 2012; Gilmore, 2010; Operational Test Agencies, 2009). Albeit 
gradual, the defense community is leveraging the long-spanning, rich his-
tory of statistical methods in industry and replacing the budget-driven 
test events, combat scenarios, and one-factor-at-a-time approach with a 
statisticaly rigorous approach to test design using DOE (Johnson et al., 
2012). Though current guidance and emphasis on the use of designed 
experiments in test plans is sufficient in explaining test planning and 
design, it falls short of providing specific guidance on test analysis and 
reporting to the decision makers, who ultimately decide on whether to 
field the weapon system to the warfighter. In these resource-constrained 
times, providing the T&E community defensible and objective test data 
to enable risk management for leadership during system development, 
procurement, and operation is imperative. 

Increased statistical rigor is needed in defense 
testing and analysis due to the complexity and 
challenges in testing a defense weapon system.

What Are Tolerance Intervals?

The importance of tolerance intervals has long been recognized 
(Wilks, 1941, 1942), with wide applicability to areas such as manufactur-
ing, pharmaceutical, quality control, engineering, and material science 
commonly referred to as A- and B-basis allowables. In general, toler-
ance intervals capture a fixed proportion of population (p) with a given 
confidence level (1-α). Confidence intervals are the most commonly used 
statistical interval method focused on parameters such as mean and/
or standard deviation, while prediction intervals consider the predic-
tion of individual responses. Prediction intervals are useful only if the 
sample on which the interval is based represents the population, but if 
the population changes over time, then the prediction interval is useless 
(Vining, 1997). In other practical instances, the proportion of popula-
tion, rather than mean is of interest, rendering tolerance intervals more 
appropriately applied in those situations. A tolerance interval allows 
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us to make statements surrounding the distribution rather than the 
predicted individual responses, such as: "We are 95 percent confident 
that at least 90 percent of the population distribution will lie within the 
specified interval." Unfortunately, tolerance intervals are the least dis-
cussed interval in extant literature. Jensen (2009) attributes this to the 
difficulty of computation and lack of statistical software packages that 
readily offer tolerance intervals. De Gryze, Langhans, and Vandebroek 
(2007) indicated practical guidelines to calculate and use tolerance 
intervals in real-world applications are currently absent and that for even 
the simplest regression model, tolerance intervals are lacking.

The relevant interval in some situations in defense testing such as 
body armor testing should be one that states a specified proportion of 
population that falls above or below some threshold limit versus merely 
reporting the mean of the response. Many researchers have conducted 
studies in the construction of tolerance limits for normal distribution; 
early works by Wilks (1941, 1942), Wald (1943), and Wald and Wolfowitz 
(1946) are widely available in the literature. Exact methods for one-sided 
and two-sided tolerance regions have been researched for the normal 
distribution. Tolerance intervals for linear regression models were 
first introduced in the seminal paper by Wallis (1951). Wallis extended 
the previous work of Wald and Wolfowitz (1946) for a normally distrib-
uted sample to a linear regression model. Since then, researchers have 
extended Wallis’s work to multiple and multivariate tolerance intervals 
(Krishnamoorthy & Mondal, 2008; Lee & Mathew, 2004). The contin-
ued research in this field has allowed T&E practitioners to expand their 
analysis and evaluation to include multiple responses such as time to 
acquire a target and miss distance. Not discussed in this article are 
Bayesian methods that incorporate a priori information and are useful 
in rolling up and including developmental test data and/or subject matter 
expert opinions. For a review of the statistical tolerance region, including 
Bayesian tolerance intervals, see Krishnamoorthy and Mathew (2009). 

Design of Experiments Framework

A simplified DOE framework (Figure 1) is proposed for use in the DoD 
T&E community and later applied to the case study. Another suggested 
framework is the Plan, Design, Execute, Analyze model developed by 
Eglin Air Force Base, Florida. 
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FIGURE 1. GENERALIZED DOE FRAMEWORK

Phase 0: Mission Goal Definition
This step is accomplished at the top level and early in the acquisition 

cycle, where the mission statement and objectives (Critical Operational 
Issues, or COIs) are clearly defined for the program. COIs answer the 
question, “What capability will the system provide?” A hierarchy can 
serve as a catalyst for generating discussion about the identification of 
factors, levels, and responses for the proposed tests. This is accomplished 

PHASE 0: MISSION GOAL DEFINITION

PHASE 1: PLAN AND DESIGN

PHASE 2: ANALYZE AND BUILD

PHASE 3: REPORT

Define mission goal

Draw conclusions

Test Event
Level

Top Level

• Define test goal and objective

• Define response variables and determine factors and 
 levels

• Choose experimental design

• Execute test and collect data

• Analyze data and build model for each response

13-688 FIGURE 1
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by the test team—a T&E Working-level Integrated Program Team 
(WIPT). The T&E WIPT membership should include all stakeholder 
organizations from the developmental test and operational test commu-
nities. Test membership should include, but is not limited to, the program 
manager, operators, subject matter experts, program analysts, testers, 
and requirements representative. Generation of goals, objectives, factors, 
levels, and responses should be an exhaustive process so no input and 
output variables are left out. Therefore, continuously including these 
members upfront is critical to improving test outcomes. 

Phase 1: Plan and Design
Test goal and objective. Every good experimental design begins 

with a clear, concise goal and objective that is well understood by all 
parties before test planning. The right kind of questions leading to 
development of quantifiable terms (responses) need to be articulated 
for effective test execution and data collection. The right quantitative 
metrics are essential for developing a good test design; poorly chosen 
or ill-defined measures can lead to unnecessary costs or ambiguous 
test results (Gilmore, 2012b). Continuous metrics, such as detection 
range, enable the most efficient use of resources and provide the most 
information. On the other hand, binary metrics, such as pass or fail, hit 
or miss, offer less information to testers and can increase test resource 
requirements. 

Response variables, factors, and levels. Selection of a response 
variable, continuous or discrete, should be carefully considered to mini-
mize risk in running into a Type I (α) or Type II (β) error. Responses are 
Key Performance Parameters, Measures of Effectiveness, Measures 
of Suitability, Critical Technical Parameters, Key System Attributes, 
and/or Measures of Performance that are documented and traced to 
the requirements document (Gilmore, 2012b). In current DoD test plan-
ning, the statistical measures of merit—power (1-β) and confidence level 
(1-α)—must be documented in the Test and Evaluation Master Plan 
(TEMP; see Gilmore, 2012b). The Type I error (α) is the probability of 
declaring a factor is affecting the response when in reality it does not. 
This percent value is typically agreed upon by the decision maker based 
on inputs from the T&E WIPT. The quantity expresses the decision mak-
ers’ risk tolerance for making a wrong decision based on limited test data 
(Freeman, Glaeser, & Rucker, 2011). A Type II error (β) is the probability 
of declaring a factor does not affect the response, when in reality it does. 
Power (1-β) is the likelihood of not making the β error and the ability to 
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detect differences. This is set by the test team during test planning. In 
general, the confidence levels are set between 80% and 95% (α = 0.20 
to 0.05), and the power for a signal-to-noise S:N = 1.0 should be above 
80% (Department of the Army, 2012). Both types of errors must be well 
understood and explained to the decision maker due to the unintended 
programmatic consequences that might result from a lack of under-
standing. Defining factors (independent variables) is no trivial matter 
and must be determined by the entire test team. The factors define the 
operational environment of the system. Some proven effective brain-
storming methods to aid the process are fishbone diagrams (also known 
as Ishikawa Diagrams) and process flow diagrams. Note that it is better 
to include more factors than preclude factors that might be significant 
(Telford, 2007). Levels are the specified values of the factors, and the 
general recommendation is to consider two to three levels for each factor 
(Freeman et al., 2011). 

Test design. The test design is constructed after the factor, levels, 
and responses are identified by the test team. Decision trade-offs between 
risk and costs are made at this stage with assistance from the test team, 
especially when test resources are limited. The choice of design involves 
consideration of sample size, selection of a suitable run order for the 
trials, and whether blocking or other randomization restrictions exist 
(Montgomery, 2001). Depending on the test conditions, copious sources 
of noise might be present and must be considered in the test design. Also, 
test resources and programmatic constraints may prohibit common 
designs. Consider the basic principles of DOE when designing a test: ran-
domization, replication, and blocking. Randomization is the underlying 
foundation of the use of statistical methods. It reduces the likelihood of 
introducing bias to the experiment by randomizing the effect of uncon-
trolled variables, such as unplanned weather effects. Replication of test 
points allows for estimation of system variability and test procedure 
error. Blocking provides another way to address variability and improves 
the power to detect a factor effect (Freeman et al., 2011). Coleman and 
Montgomery (1993) provide guidelines in the preexperimental planning 
phases to assist with designing and conducting an experiment. Some 
other papers useful in explaining experimental planning and design 
include Hunter (1977) and Montgomery (2005).
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Phase 2: Analyze and Build
If all steps leading to this phase are properly and thoroughly planned, 

then the test is well defined. However, no test execution goes as planned 
due to nuisance factors and noise that exist such as weather and/or data 
processing. Data are collected at this phase and analyzed by the test team. 
A mathematical model is created for each response variable by mapping 
a response surface over the region of interest (operational range) so that 
the effect of factors on that response can be studied (Johnson et al., 2012). 
The analysis will result in generating statistically defensible models that 
inform the decision maker. 

Phase 3: Report 
The test team should draw conclusions based on information 

extracted from test data. Appropriate scientific test and analysis tech-
niques should be employed so that senior leaders can make an informed 
decision backed by defensible data. 

Brief Review of Two-Sided Tolerance Intervals

In this section, two-sided approximation tolerance intervals are con-
sidered. To describe a general two-sided tolerance interval form, let x1, 
x2, .., xn be values of a random sample X1, X2, .., Xn of size n from a normal 
distribution with mean μ and variance σ2 where: 

X ~ N(μ, σ2)

The 100(P)% two-sided tolerance interval with confidence 100(1-α)% 
is of the form  ± k2s for which the following applies:

Pr[P(  - k2s <  X <  + k2s) ≥ P ] = 1 - α

where  is the sample mean, k2 is a constant multiplier, s is the sam-
ple standard deviation, 1-α is the confidence level associated with the 
interval, and P is the proportion of distribution covered by the interval, 
referred to as coverage. To describe the two-sided regression tolerance 
interval, let’s consider the general structure for a regression model:

yi = β0+ βxi+ εi,i = 1,…,n
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where yi is the p x 1 response vector, xi is the known m x 1 factor variable 
vector, β0 is the p x 1 intercept vector, β is unknown p x m regression 
parameter vector, and εi is assumed to be a vector of independent, nor-
mally distributed error terms, each with mean zero and variance σ2. To 
estimate β, least squares regression is applied based on a set of n observa-
tions. The predicted mean response would then be of the form:

ŷ = x

Suppose for any known value of factors x = xi with a corresponding 
fitted value ŷi , the 100(P)% two-sided tolerance interval with confidence 
100(1-α)% is of the form:

ŷi ± k2,is

where k is the tolerance factor and s2 is the residual mean square error 
based on degrees of freedom. 

Monte Carlo Evaluation of Tolerance Intervals
The first approximation considered was proposed by Howe (1969). 

Howe introduced an approximate factor for a two-sided tolerance inter-
val for a normally distributed population given as: 

where i s the αth percentile of the chi-square distribution with 
df, degrees of freedom, n is the sample size, df = n – m (number of inde-
pendent random samples) is degrees of freedom defined as the number of 
values that are free to vary, and z(1-P)/2 is the pth percentile of the standard 
normal distribution. 

The second approximation was proposed by Zorn, Gibbons, and 
Sonzogni (1997). They introduced a weighted tolerance interval for 
estimating detection and quantification limits in the chemical field. 
Leveraging the earlier work of Lieberman and Miller (1963) in developing 
simultaneous tolerance intervals for linear regression, they translated 
it to a nonsimultaneous case. The two-sided approximation (TI2) would 
result in: 

k2 =       df(1+1
n)z2

(1-P)/2

x2
1 - α, df√ 

~ Φ χ
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where x0 is a point in the design space, X is the design matrix of the 
regression model, Ф-1 (P) is the inverse cumulative normal distribution, 
and ta

2 ,df is the Student’s t-inverse cumulative distribution function using 
degrees of freedom for the corresponding confidence. 

The third approximation is credited to De Gryze et al. (2007) when 
they proposed taking α in both χ2 (df ) and t(df ) quantiles, thus resulting 
in the approximation below:

where x0 is a point in the design space, X is the design matrix of the 
regression model, Φ-1 (P) is the inverse cumulative normal distribution, 
and tα

2,df ) is the Student’s t-inverse cumulative distribution function 
using degrees of freedom for the corresponding confidence. 

The final method introduced is the exact two-sided tolerance interval 
due to Krishnamoorthy and Mathew (2009). The k is the solution of the 
integral equation:

where df is the degrees of freedom, d2 = x´(X´X)-1 x where X is the design 
matrix of the linear regression model, m is the number of independent 
random samples (factors), Φ(z) is the cumulative distribution function, 
ϕ(z)  is the probability density function, Fχ2

df is the cumulative distribu-
tion function of a chi-square distribution with df degrees of freedom. 
Detailed derivation of the exact equation can be found in Howe (1969), 
equations 1.2.3, 1.2.4, 2.5.7, and 2.5.8) and Witkovsky (2013). This article 
employs the MATLAB tolerance package developed by Witkovsky (2009) 
using the Gauss-Kronrod quadratic formulae for integration. 

The following Monte-Carlo simulation algorithm is applied to 
approximations by De Gryze et al. (2007), Howe (1969), and Zorn et al. 
(1997).

1. Simulate 500 design points (x0) within the test space uniformly 
distributed throughout the design space. 

~ Φ χα, df (XTX)-1   +     -1 (P) (1 - α, df)x0

(                 )(                               )2m P    1 - F χ2
df (d2z2)ʃ ∞

0

df
k2 (2Φ(z) - 1)m-1ɸ(z) = 1 - α1;Pχ2
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2. For a given 1-α, p, compute tolerance interval multiplier at x0  
(design point in the test space).

3. Since the tolerance interval multiplier is a function of the posi-
tion in the design space, take the average tolerance interval 
multiplier value (based on the Monte Carlo simulation sample of 
500 points previously mentioned) and multiply by tα,df to deter-
mine the tolerance factor. 

Next, the following are computed and compared: (a) the approximate 
factor by De Gryze et al. (2007), (b) the approximate factor by Zorn et 
al. (1997), (c) the approximate factor by Howe (1969), and (d) the exact 
tolerance factor. Figure 2 depicts the comparison case of p = 0.99 and 1-a 
= {0.90. 0.95, 0.99}.

FIGURE 2. P = 0.99, 1-α = {0.90, 0.95, 0.99}
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Figure 2 shows that all tolerance factors decrease as degrees of 
freedom increase. Immediately apparent is that the Zorn et al. (1997) 
approximation is the most conservative, especially for smaller degrees of 
freedom. All numerical results are slightly above the exact method, but 
the Howe (1969) approximation is slightly lower with larger degrees of 
freedom. The two-sided tolerance intervals performed well for degrees 
of freedom 4 and above. The approximated values performed well against 
the exact method, but it can be noted that Zorn’s method would require 
a larger sample size. In general, to cover a multifactor region requires a 
wider tolerance region compared to the normal sample. So why inves-
tigate approximation methods when an exact method is available? An 
exact method calculation can be extremely complex and is rarely if ever 
available on statistical software packages. It can also be thought of as 
costly, given the difficulty and time involved in obtaining an exact solu-
tion. Therefore, approximation methods are generally preferred, but their 
accuracy is seldom confirmed. If an approximation needs to be used, 
the author recommends the De Gryze et al. (2007) proposed approxi-
mate method as a statistical test analysis method commensurate with 
designed experiments. The appeal of the De Gryze et al. (2007) method 
stems from the fact that this method takes into account the design 
structure and variance, is easier to compute, and is comparable to the 
exact method. 

Use of Tolerance Intervals in Designed 
Experiment Case Study

This section will apply the two-sided tolerance interval to a designed 
experiment using a notional case study. The case study used throughout 
the article is for academic purposes and is by no means representative 
of any existing weapon employed by the DoD. Some aspects of the case 
study have been simplified for educational purposes. 

Phase 1: Plan and Design
Objective. The objective of the experiment is to characterize the 

performance of a new and old air-to-ground missile. 

Response variables, factors, and levels. Figure 3 and Table 1 
show the factors and levels generated by the test team during the test 
design planning phase. The response variables are miss distance and 
impact velocity error. 
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FIGURE 3. FACTORS AND LEVELS GENERATED BY TEST TEAM 
DURING TEST DESIGN PLANNING PHASE

TABLE 1. FACTORS AND LEVELS

Test design. A 24 factorial test design, 16 runs were selected for this 
case study. 

Phase 2: Analyze and Build
Test execution. Suppose the test team executed the test, and  

Table 2 reflects the results collected.

 
Model building. A regression model was built and analyzed. The 

overall response models were significant; range and airspeed were the 
two most important factors in characterizing the air-to-ground missile 
performance, and there was no statistical difference between the legacy 

Factor Levels
A Variant  0 (Legacy), 1 (New)

B Range -1, 1

C Altitude  25, 35

D Airspeed  0.85, 0.95

Inputs (x) Testable Factors Output (y) ResponsesFactors held constant

Nuisance Factors/Noise

Variant

Range

Altitude

Airspeed

Miss Distance

Impact Velocity Error

Air-to-Ground Missile

13-688 FIGURE 3
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and new variant across the operational envelope. However, for this 
research, analysis will be limited to the tolerance interval computation 
under high-airspeed and high-range conditions. 

TABLE 2. AIR-TO-GROUND CASE STUDY TEST DESIGN AND 
RESULTS

Phase 3: Report
Based on the models generated, the following values were obtained: 

mean miss distance response value = 9.36 feet, miss distance standard 
deviation = 2.33 feet, mean impact velocity error response value = 7.54 
feet/s, impact velocity error standard deviation = 2.15 feet/s, and degrees 
of freedom = 15. Suppose the test team has selected a, confidence = 0.05 
(95%) and p, proportion of population = 99%. Referring to the De Gryze 
et al. (2007) approximation, the test team was able to report “with 95% 
confidence, at least 99% of the miss distance population will be between 
5.0 to 26.3 ft., and at least 99% of the velocity error population will be 
between 3.9 ft./s to 23.5 ft./s under the specified condition.” Now the 

Run A: 
Variant

B: 
Range

C: 
Altitude

D: 
Airspeed

Miss 
Distance

Impact 
Velocity 
Error

1 1 -1 25 0.95 3.44 1.76

2 0  1 25 0.95 20.09 18.96

3 0  1 35 0.85 5.63 3.4

4 1 -1 35 0.95 8.58 6.71

5 1 -1 35 0.85 1.14 0.76

6 1  1 35 0.95 20.81 18.46

7 0 -1 25 0.85 4.65 2.83

8 1  1 25 0.85 4.45 2.49

9 1  1 25 0.95 19.9 17.51

10 1  1 35 0.85 5.44 3.86

11 0  1 35 0.95 22.47 20.35

12 0 -1 35 0.85 3.55 1.61

13 1 -1 25 0.85 3.04 1.38

14 0 -1 35 0.95 13.76 11.45

15 0 -1 25 0.95 7.58 5.39

16 0  1 25 0.85 5.23 3.7
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test team overlaid the two most important factors—range and airspeed—
and bounded the “test design space” with tolerance intervals obtained 
previously for condition 1 (Figure 4). From this plot, the team can easily 
extract the “sweet spot,” “operating window,” or in this case the “toler-
ance interval space” where they can ascertain with a specified confidence 
that at least 99 percent of both responses would be found, under the 
specified conditions. 

FIGURE 4. RANGE AND AIRSPEED OVERLAY PLOT
Further, the test team investigated how confidence and tolerance 

intervals compared. The 95 percent confidence interval for miss distance 

mean and impact velocity error mean were found to be within 13.8 to 17.5 
feet, and 12 to 15.4 feet/s, respectively. This means the “true” mean of 
the miss distance and impact velocity error measurements lies within 
these bounds. Oftentimes, we might not need to place bounds on the 
distribution parameters, but on the specified proportion of population 
instead, hence the appeal of tolerance intervals. The confidence interval 
may win the interval popular vote; however, the beauty of the tolerance 
interval lies in the fact it takes into account not only the sample size, but 
also the estimates of mean and standard deviation noise. Given the test 
data generated, the test team was able to narrow down and recommend 

Overlay Plot
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a specific response interval where 99 percent of the population would lie 
at the factors identified under the specified conditions. This enabled the 
program manager to set an operational window where the air-to-ground 
missile would perform at its optimum for high airspeeds and high range. 
(Recall the case study is notional, but this is an illustration of the type of 
information that can be drawn.)

In this case study, a statistical tolerance interval ensured a defensible 
conclusion with a sound analytical basis, rather than simply stating the 
mean as criticized in the DOT&E FY 2012 Annual Report. Through the 
combined use of DOE, regression analysis, and tolerance intervals, T&E 
practitioners are able to frame the operating window with some confi-
dence and have the ability to map out the test space where factors can 
be reliably tested. This is a significant improvement over simply stating 
a single average across all test conditions, and it allows us to extract 
more information from limited resources and test events. The efficien-
cies obtained through the meticulous planning using DOE principles 
were retained. An advanced statistical analysis that complements DOE 
proved capable of defining an operating window with some certainty and 
well-understood risks where the air-to-ground missile can be adequately 
operated. Understanding the appropriate use of statistical analysis 
technique is imperative and does matter; for example, interaction effects 
need to be considered and a simple one-way analysis of variance or use of 
average value might ignore or hide the interaction between main effects. 
Therefore, the research into suitable advanced statistical analysis meth-
ods commensurate with DOE needs to continue. 

Through the combined use of DOE, regression 
analysis, and tolerance intervals, T&E 
practitioners are able to frame the operating 
window with some confidence, and have the ability 
to map out the test space where factors can be 
reliably tested. 
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Limitations and Future Research

In general, tolerance intervals offer a more useful means to assure, 
with some confidence, that a fixed proportion of the systems’ perfor-
mance over the design space falls within a specified interval. The 
analysis method reaps the benefits of a designed experiment and employs 
statistical techniques that are commensurate with DOE. This research, 
however, does have limitations, indicating a need for further discussion 
and research. Future research should include qualitative metrics, such 
as categorical factors. In addition, other tolerance intervals such as 
nonparametric regression tolerance intervals should be investigated 
for future use in the defense test community (see Young, 2010, for other 
intervals). One-sided regression tolerance intervals for defense testing 
should be presented and compared using the proposed Monte Carlo simu-
lation algorithm; the calculation is generally simpler than the two-sided 
case. When exact methods are not available, the author recommends 
using the approximate methods mentioned in this article that are best 
suited for multiple regression models. Be forewarned that the use of 
tolerance intervals may require a larger sample size; for this reason and 
to properly size your experiment, the author also recommends investi-
gating the use of tolerance intervals in test planning (see Whitcomb & 
Anderson, 2011, for examples). 

Recommendations and Conclusions

The defense T&E community has progressed in its efforts to advance 
statistical rigor within the community over the past 3 years; however, 
some areas still need improvement. One area is to improve interaction 
between necessary stakeholder organizations and the T&E community. 
All organizations that have an impact and/or influence on the program’s 
T&E planning, execution, and assessment need to be engaged in the T&E 
WIPT as early as possible.  Another area would be to increase education 
and training on the use of STAT for all stakeholders, and this means going 
above and beyond what confidence intervals provide. Finally, best prac-
tices, lessons learned, and research need to be continuously published 
and readily available to the T&E community.  

In these resource-constrained times, every dollar spent on defense 
must count. As the DoD moves toward generating defensible data through 
the use of DOE for test designs and institutionalizing statistical rigor 
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within the T&E community, it seems logical to employ advanced statisti-
cal analysis methods that reap the benefits afforded by DOE to generate 
efficiencies. Rigor should not end with the test design, and solid analyti-
cal evidence needs to be presented all the way through test reporting. 
The literature to date does not adequately address the appropriate use of 
defensible data developed through improved design methods, nor does it 
propose a statistical analysis, such as tolerance intervals, commensurate 
with test designs developed using DOE for the defense community. This 
article fills that gap by introducing the applicability of tolerance intervals 
as an analysis technique in a designed experiment and by comparing 
several two-sided approximate tolerance factors estimated by Monte 
Carlo simulation to the exact method. Further, this article provides a 
recommendation of the most appropriate tolerance interval and its appli-
cability to the defense T&E community using a simple case study. This 
analytical method provides a meaningful objective way to add rigor to 
an otherwise subjective assessment, extracts more information to state 
how the system will perform in the operational conditions, and serves as 
a quantitative decision aid to our senior leaders.
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